Structural examination of the transient 3-aminotyrosyl radical on the PCET pathway of E. coli ribonucleotide reductase by multifrequency EPR spectroscopy
- PMID: 19821570
- PMCID: PMC4703294
- DOI: 10.1021/ja903879w
Structural examination of the transient 3-aminotyrosyl radical on the PCET pathway of E. coli ribonucleotide reductase by multifrequency EPR spectroscopy
Abstract
E. coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, a process that requires long-range radical transfer over 35 A from a tyrosyl radical (Y(122)*) within the beta2 subunit to a cysteine residue (C(439)) within the alpha2 subunit. The radical transfer step is proposed to occur by proton-coupled electron transfer via a specific pathway consisting of Y(122) --> W(48) --> Y(356) in beta2, across the subunit interface to Y(731) --> Y(730) --> C(439) in alpha2. Using the suppressor tRNA/aminoacyl-tRNA synthetase (RS) methodology, 3-aminotyrosine has been incorporated into position 730 in alpha2. Incubation of this mutant with beta2, substrate, and allosteric effector resulted in loss of the Y(122)* and formation of a new radical, previously proposed to be a 3-aminotyrosyl radical (NH(2)Y*). In the current study [(15)N]- and [(14)N]-NH(2)Y(730)* have been generated in H(2)O and D(2)O and characterized by continuous wave 9 GHz EPR and pulsed EPR spectroscopies at 9, 94, and 180 GHz. The data give insight into the electronic and molecular structure of NH(2)Y(730)*. The g tensor (g(x) = 2.0052, g(y) = 2.0042, g(z) = 2.0022), the orientation of the beta-protons, the hybridization of the amine nitrogen, and the orientation of the amino protons relative to the plane of the aromatic ring were determined. The hyperfine coupling constants and geometry of the NH(2) moiety are consistent with an intramolecular hydrogen bond within NH(2)Y(730)*. This analysis is an essential first step in using the detailed structure of NH(2)Y(730)* to formulate a model for a PCET mechanism within alpha2 and for use of NH(2)Y in other systems where transient Y*s participate in catalysis.
Figures








Similar articles
-
Kinetics of radical intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted Escherichia coli ribonucleotide reductases.J Am Chem Soc. 2011 Jun 22;133(24):9430-40. doi: 10.1021/ja201640n. Epub 2011 May 25. J Am Chem Soc. 2011. PMID: 21612216 Free PMC article.
-
ENDOR spectroscopy and DFT calculations: evidence for the hydrogen-bond network within α2 in the PCET of E. coli ribonucleotide reductase.J Am Chem Soc. 2012 Oct 24;134(42):17661-70. doi: 10.1021/ja3071682. Epub 2012 Oct 16. J Am Chem Soc. 2012. PMID: 23072506 Free PMC article.
-
Use of 2,3,5-F(3)Y-β2 and 3-NH(2)Y-α2 to study proton-coupled electron transfer in Escherichia coli ribonucleotide reductase.Biochemistry. 2011 Mar 1;50(8):1403-11. doi: 10.1021/bi101319v. Epub 2011 Feb 8. Biochemistry. 2011. PMID: 21182280 Free PMC article.
-
Long-range proton-coupled electron transfer in the Escherichia coli class Ia ribonucleotide reductase.Essays Biochem. 2017 May 9;61(2):281-292. doi: 10.1042/EBC20160072. Print 2017 May 9. Essays Biochem. 2017. PMID: 28487404 Review.
-
Structure and interactions of amino acid radicals in class I ribonucleotide reductase studied by ENDOR and high-field EPR spectroscopy.Biochim Biophys Acta. 2005 Feb 25;1707(1):67-90. doi: 10.1016/j.bbabio.2004.02.011. Biochim Biophys Acta. 2005. PMID: 15721607 Review.
Cited by
-
Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase.Acc Chem Res. 2013 Nov 19;46(11):2524-35. doi: 10.1021/ar4000407. Epub 2013 Jun 4. Acc Chem Res. 2013. PMID: 23730940 Free PMC article.
-
Site-specific incorporation of 3-nitrotyrosine as a probe of pKa perturbation of redox-active tyrosines in ribonucleotide reductase.J Am Chem Soc. 2010 Jun 23;132(24):8385-97. doi: 10.1021/ja101097p. J Am Chem Soc. 2010. PMID: 20518462 Free PMC article.
-
Equilibration of tyrosyl radicals (Y356•, Y731•, Y730•) in the radical propagation pathway of the Escherichia coli class Ia ribonucleotide reductase.J Am Chem Soc. 2011 Nov 16;133(45):18420-32. doi: 10.1021/ja207455k. Epub 2011 Oct 26. J Am Chem Soc. 2011. PMID: 21967342 Free PMC article.
-
A hot oxidant, 3-NO2Y122 radical, unmasks conformational gating in ribonucleotide reductase.J Am Chem Soc. 2010 Nov 3;132(43):15368-79. doi: 10.1021/ja1069344. J Am Chem Soc. 2010. PMID: 20929229 Free PMC article.
-
Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: Escherichia coli Ribonucleotide Reductase as a Paradigm.Biochemistry. 2018 Jun 19;57(24):3402-3415. doi: 10.1021/acs.biochem.8b00160. Epub 2018 Apr 17. Biochemistry. 2018. PMID: 29630358 Free PMC article.
References
-
- Stubbe J.; van der Donk W. A. Chem. Rev. 1998, 98, 705. - PubMed
-
- Jordan A.; Reichard P. Annu. Rev. Biochem. 1998, 67, 71. - PubMed
-
- Brown N. C.; Canellakis Z. N.; Lundin B.; Reichard P.; Thelander L. Eur. J. Biochem. 1969, 9, 561. - PubMed
-
- Thelander L. J. Biol. Chem. 1973, 248, 4591. - PubMed
-
- Stubbe J. J. Biol. Chem. 1990, 265, 5329. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases