Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 16:6:92.
doi: 10.1186/1742-4690-6-92.

Lack of evidence for xenotropic murine leukemia virus-related virus(XMRV) in German prostate cancer patients

Affiliations

Lack of evidence for xenotropic murine leukemia virus-related virus(XMRV) in German prostate cancer patients

Oliver Hohn et al. Retrovirology. .

Abstract

Background: A novel gammaretrovirus named xenotropic murine leukemia virus-related virus (XMRV) has been recently identified and found to have a prevalence of 40% in prostate tumor samples from American patients carrying a homozygous R462Q mutation in the RNaseL gene. This mutation impairs the function of the innate antiviral type I interferon pathway and is a known susceptibility factor for prostate cancer. Here, we attempt to measure the prevalence of XMRV in prostate cancer cases in Germany and determine whether an analogous association with the R462Q polymorphism exists.

Results: 589 prostate tumor samples were genotyped by real-time PCR with regard to the RNaseL mutation. DNA and RNA samples from these patients were screened for the presence of XMRV-specific gag sequences using a highly sensitive nested PCR and RT-PCR approach. Furthermore, 146 sera samples from prostate tumor patients were tested for XMRV Gag and Env antibodies using a newly developed ELISA assay. In agreement with earlier data, 12.9% (76 samples) were shown to be of the QQ genotype. However, XMRV specific sequences were detected at neither the DNA nor the RNA level. Consistent with this result, none of the sera analyzed from prostate cancer patients contained XMRV-specific antibodies.

Conclusion: Our results indicate a much lower prevalence (or even complete absence) of XMRV in prostate tumor patients in Germany. One possible reason for this could be a geographically restricted incidence of XMRV infections.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Analysis of sample DNA with allele specific real time PCR for the R462Q genotype. 76 of 589 samples (12.9%) are homozygous for the QQ allele, 204 samples (34.6%) are homozygous for the RR allele and 309 (52.5%) are heterozygous.
Figure 2
Figure 2
Nested PCR for sensitive screening of patient tumor tissue DNA. (A) A nested PCR primer setup was used as indicated for the screening of 589 PCa patient DNA isolated from prostate tumor and stroma tissue. Primer sites are numbered according to the XMRV VP62 sequence (Genbank EF185282). (B) The reproducible detection limit was 10 copies of plasmid DNA in human genomic DNA resulting in a 174 bp PCR product for XMRV. In the experiment shown even 1 copy could be amplified. Mouse tail DNA (MT) was used as positive control yielding a 198 bp product amplified from endogenous genomic MLV sequences. (C) Nested-PCR screen of the first 16 QQ patients (lane 1-16) with the In-For and Deletion-Rev primer pair (upper panel) and In-For and In-Rev primer setup (lower panel); lane 17 = mouse tail DNA, lane 18 = water control outer PCR mix, lane 19 = water control inner PCR mix, lane 20 = pXMRV, lane 21 = pDG75, marker = 100 bp marker.
Figure 3
Figure 3
Nested RT-PCR for sensitive and specific screening of patient tumor tissue RNA. (A) RT-PCR for all 589 RNA samples was carried out with In-For and In-Rev primers, followed by a quantitative real-time PCR using primers and probe as indicated. Using the Q445T forward primer spanning the XMRV typical deletion ensured specific detection of XMRV sequences. Primer sites are numbered according to the XMRV VP62 sequence. (B) Real-time PCR curves showing the mean of triplicates. The sensitivity shown in this example was 10 copies. (C) Example of the first 16 QQ patients RNA screen including GAPDH control reactions as the mean value of duplicates.
Figure 4
Figure 4
Immunoflourescence microscopy and electron microscopy of transfected 293T cells. Mice were immunized with recombinant gp70 or pr65 protein fragments, and sera were used for immunoflourescence microsocopy of 293T cells transfected two days earlier with the molecular XMRV clone VP62 or with gp70 and pr65 expression constructs. (A) A pool of sera from gp70 immunized mice showed reactivity against whole XMRV or XMRV envelope protein expressing cells. Preimmune sera showed no binding, and immune sera did not react with naive 293T cells. (B) A pool of immune sera from pr65 (Gag) immunized mice showed similar reactivity to whole virus or XMRV Gag expressing cells. Gag protein was expressed at higher levels in cells transfected with the CMV-driven codon-optimized gag construct than in those transfected with the VP62 molecular clone of XMRV. (C) Thin section of 293T cells 2 days after transfection with the VP62 molecular clone of XMRV. Particles budding at the cell membrane and a mature XMRV virion are shown. Scale bar = 100 nm.
Figure 5
Figure 5
ELISA of PCa patient's sera using recombinant XMRV proteins. Mean ODs with two replicates of each patient sera diluted 1:200 (dark bars) and of serially diluted sera from immunized mice (light bars). Cut-off was calculated as the mean of four (gp70) and five (pr65) sera from healthy controls plus two times standard deviation. (A) ELISA of randomly chosen PCa patient sera using the gp70 (Env) fragment (aa 1-245). (B) ELISA using a mixture of both pr65 (Gag) fragments. In general there was a higher background against the pr65 proteins, seen also with the sera of healthy humans and the preimmune mouse sera.

Similar articles

Cited by

References

    1. Boyle P, Ferlay J. Cancer incidence and mortality in Europe, 2004. Ann Oncol. 2005;16:481–488. doi: 10.1093/annonc/mdi098. - DOI - PubMed
    1. Kolonel LN, Altshuler D, Henderson BE. The multiethnic cohort study: exploring genes, lifestyle and cancer risk. Nat Rev Cancer. 2004;4:519–527. doi: 10.1038/nrc1389. - DOI - PubMed
    1. Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med. 2003;349:366–381. doi: 10.1056/NEJMra021562. - DOI - PubMed
    1. Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD, Brownstein MJ, Bova GS, Guo H, Bujnovszky P, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science. 1996;274:1371–1374. doi: 10.1126/science.274.5291.1371. - DOI - PubMed
    1. Silverman RH. A scientific journey through the 2-5A/RNase L system. Cytokine Growth Factor Rev. 2007;18:381–388. doi: 10.1016/j.cytogfr.2007.06.012. - DOI - PMC - PubMed

MeSH terms