Zebrafish antipredatory responses: a future for translational research?
- PMID: 19836422
- PMCID: PMC3203216
- DOI: 10.1016/j.bbr.2009.10.008
Zebrafish antipredatory responses: a future for translational research?
Abstract
Human neuropsychiatric conditions associated with abnormally exaggerated or misdirected fear (anxiety disorders and phobias) still represent a large unmet medical need because the biological mechanisms underlying these diseases are not well understood. Animal models have been proposed to facilitate this research. Here I review the literature with a focus on zebrafish, an upcoming laboratory organism in behavioral brain research. I argue that abnormal human fear responses are likely the result of the malfunction of neurobiological mechanisms (brain areas, circuits and/or molecular mechanisms) that originally evolved to support avoidance of predators or other harm in nature. I also argue that the understanding of the normal as well as pathological functioning of such mechanisms may be best achieved if one utilizes naturalistic experimental approaches. In case of laboratory model organisms, this may entail presenting stimuli associated with predators and measuring species-specific antipredatory responses. Although zebrafish is a relatively new subject of such inquiry, I review the recently rapidly increasing number of zebrafish studies in this area, and conclude that zebrafish is a promising research tool for the analysis of the neurobiology and genetics of vertebrate fear responses.
Copyright 2009 Elsevier B.V. All rights reserved.
Similar articles
-
Antipredatory behavior of zebrafish: adaptive function and a tool for translational research.Evol Psychol. 2013 Jul 18;11(3):591-605. doi: 10.1177/147470491301100308. Evol Psychol. 2013. PMID: 23864295 Free PMC article.
-
In search of optimal fear inducing stimuli: Differential behavioral responses to computer animated images in zebrafish.Behav Brain Res. 2012 Jan 1;226(1):66-76. doi: 10.1016/j.bbr.2011.09.001. Epub 2011 Sep 8. Behav Brain Res. 2012. PMID: 21920389 Free PMC article.
-
An automated predator avoidance task in zebrafish.Behav Brain Res. 2011 Jan 1;216(1):166-71. doi: 10.1016/j.bbr.2010.07.028. Epub 2010 Jul 30. Behav Brain Res. 2011. PMID: 20674614 Free PMC article.
-
Understanding zebrafish aggressive behavior.Behav Processes. 2019 Jan;158:200-210. doi: 10.1016/j.beproc.2018.11.010. Epub 2018 Nov 20. Behav Processes. 2019. PMID: 30468887 Review.
-
Using zebrafish to unravel the genetics of complex brain disorders.Curr Top Behav Neurosci. 2012;12:3-24. doi: 10.1007/7854_2011_180. Curr Top Behav Neurosci. 2012. PMID: 22250005 Review.
Cited by
-
Behavioral changes in response to sound exposure and no spatial avoidance of noisy conditions in captive zebrafish.Front Behav Neurosci. 2015 Feb 17;9:28. doi: 10.3389/fnbeh.2015.00028. eCollection 2015. Front Behav Neurosci. 2015. PMID: 25741256 Free PMC article.
-
Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish.Psychopharmacology (Berl). 2012 Mar;220(2):319-30. doi: 10.1007/s00213-011-2482-2. Epub 2011 Sep 29. Psychopharmacology (Berl). 2012. PMID: 21956239
-
First description of behavior and immune system relationship in fish.Sci Rep. 2018 Jan 16;8(1):846. doi: 10.1038/s41598-018-19276-3. Sci Rep. 2018. PMID: 29339805 Free PMC article.
-
Imaging escape and avoidance behavior in zebrafish larvae.Rev Neurosci. 2011;22(1):63-73. doi: 10.1515/RNS.2011.008. Rev Neurosci. 2011. PMID: 21572576 Free PMC article.
-
The effect of fish density and tank size on the behavior of adult zebrafish: A systematic analysis.Front Behav Neurosci. 2022 Oct 5;16:934809. doi: 10.3389/fnbeh.2022.934809. eCollection 2022. Front Behav Neurosci. 2022. PMID: 36275854 Free PMC article.
References
-
- Alsop D, Vijayan M. The zebrafish stress axis: Molecular fallout from the teleost specific genome duplication event. Gen Comp Endocrinol. 2009;161:62–66. - PubMed
-
- Alsop D, Vijayan MM. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol. 2008;294:R711–719. - PubMed
-
- Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RA, McGregor IS. The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev. 2005;29:1123–1144. - PubMed
-
- Barcellos LJG, Ritter F, Kreutz LC, Quevedo RM, Bolognesi da Silva L, Bedin AC, et al. Whole-body cortisol increases after direct and visual contact with a predator in zebrafish Danio rerio. Aquaculture. 2007;272:774–778.