Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 20;165(2):515-24.
doi: 10.1016/j.neuroscience.2009.10.023.

Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo

Affiliations

Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo

T Yabe et al. Neuroscience. .

Abstract

Ferulic acid (4-hydroxy-3-methoxycinnamic acid; FA) is a plant constituent and is contained in several medicinal plants for clinical use. In this paper, we investigated the effects of FA on the proliferation of neural stem/progenitor cells (NSC/NPCs) in vitro and in vivo. FA significantly increased the proliferation of NSC/NPCs cultured from the telencephalon of embryonic day-14 rats, and increased the number and size of secondary formed neurospheres. An in vitro differentiation assay showed that FA did not affect the percentage of either neuron-specific class III beta-tubulin (Tuj-1)-positive cells or glial fibrillary acidic protein (GFAP)-positive cells in the total cell population. Oral administration of FA increased the number of newly generated cells in the dentate gyrus (DG) of the hippocampus of corticosterone (CORT)-treated mice, indicating that FA enhances the proliferation of adult NSC/NPCs in vivo. We also found that oral administration of FA increased cAMP response element binding protein (CREB) phosphorylation and brain-derived neurotrophic factor (BDNF) mRNA level in the hippocampus of CORT-treated mice, and ameliorated the stress-induced depression-like behavior of mice. These novel pharmacological effects of FA may be useful for the treatment of mood disorders such as depression.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources