Differential expression of platelet-activating factor acetylhydrolase in lung macrophages
- PMID: 19837851
- PMCID: PMC2793189
- DOI: 10.1152/ajplung.00022.2009
Differential expression of platelet-activating factor acetylhydrolase in lung macrophages
Abstract
Platelet-activating factor (PAF) acetylhydrolase plays a crucial role inactivating the potent inflammatory mediator, PAF. PAF is implicated in the initiation and propagation of acute lung injury. Although PAF acetylhydrolase is a constitutively active plasma protein, increased PAF production during inflammatory events may necessitate an increase in PAF acetylhydrolase activity in the local environment. A series of experiments were conducted to determine whether the systemic administration of LPS to Sprague-Dawley rats resulted in enhanced expression of PAF acetylhydrolase in lung tissue. Ribonuclease protection assays revealed a dramatic increase in PAF acetylhydrolase mRNA, which peaked at 24 h following in vivo LPS administration. The increase in PAF acetylhydrolase mRNA was dose dependent and was detected when as little as 10 microg/kg of LPS was administered. Western blot analyses of lung tissue homogenates confirmed an increased production of PAF acetylhydrolase protein in response to LPS. In addition, Western blot analyses revealed the rat PAF acetylhydrolase protein exhibited heterogeneous molecular weights with predominant species migrating at 63 and 67 kDa. Some of the molecular weight heterogeneity likely resulted from extensive glycosylation of the secreted protein. Immunohistochemical analyses of lung tissue sections and colocalization experiments revealed a heterogenous population of cells that express the plasma-type PAF acetylhydrolase. Lung interstitial macrophages were PAF acetylhydrolase positive, but surprisingly, alveolar macrophages did not increase expression of PAF acetylhydrolase in response to systemic LPS administration. In addition, rat granulocytes consisting primarily of neutrophils were strongly positive for PAF acetylhydrolase in the LPS-exposed lung tissue. The absence of immunoreactive PAF acetylhydrolase in alveolar macrophages obtained from bronchial alveolar lavage confirmed that systemic LPS administration resulted in enhanced PAF acetylhydrolase expression only in a subset of lung macrophages.
Figures








References
-
- Artigas A, Bernard GR, Carlet J, Dreyfuss D, Gattinoni L, Hudson L, Lamy M, Marini JJ, Matthay MA, Pinsky MR, Spragg R, Suter PM. The American-European Consensus Conference on ARDS, part 2: Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Acute respiratory distress syndrome. Am J Respir Crit Care Med 157: 1332– 1347, 1998 - PubMed
-
- Asano K, Okamoto S, Fukunaga K, Shiomi T, Mori T, Iwata M, Ikeda Y, Yamaguchi K. Cellular source(s) of platelet-activating-factor acetylhydrolase activity in plasma. Biochem Biophys Res Commun 261: 511– 514, 1999 - PubMed
-
- Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Chambless LE, Myerson M, Wu KK, Sharrett AR, Boerwinkle E. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study.[see comment]. Arch Intern Med 165: 2479– 2484, 2005 - PubMed
-
- Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Heiss G, Sharrett AR. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study.[see comment]. Circulation 109: 837– 842, 2004 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources