Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Oct 25;252(20):7180-3.

Mast cell binding of neurotensin. II. Molecular conformation of neurotensin involved in the stereospecific binding to mast cell receptor sites

  • PMID: 198404
Free article

Mast cell binding of neurotensin. II. Molecular conformation of neurotensin involved in the stereospecific binding to mast cell receptor sites

L H Lazarus et al. J Biol Chem. .
Free article

Abstract

Systematic substitution of the natural L-amino acids in neurotensin by their D isomers reveals that the COOH-terminal portion of this tridecapeptide is required for binding to mast cell receptors: D-amino acid replacements from Pro10 through Leu13 substantially decrease that binding. Either blockage of the COOH-terminal carboxyl group as with N-methylamidation, or formation of a cyclic structure by the inclusion of a disulfide bond, a Cys2,13 substitution, markedly reduces the specific binding to mast cell receptor sites. Modifications in the NH2-terminal portion of neurotensin do not affect the binding to mast cells. However, D-Arg8 and D-Arg9 substitutions increase binding by factors of 5- to 6-fold. The hydroxyl group at position 3 or 11 is not essential for binding since Phe3 or Phe11 is equivalent to Tyr3 or Tyr11. The COOH-terminal penta- and hexapeptides are able to displace approximately 70% 125I-neurotensin relative to the intact peptide. Of 18 other biologically active peptides tested, only xenopsin, a naturally occurring COOH-terminal analog of neurotensin, and bradykinin effectively compete in the binding assay to an extent of 60 and 100%, respectively. Histamine, diphenhydramine, and noradrenaline are ineffective in this regard.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources