Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping
- PMID: 19844193
- PMCID: PMC2839228
- DOI: 10.1038/mt.2009.248
Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping
Abstract
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder caused by mutations in the dystrophin gene that result in the absence of functional protein. Antisense-mediated exon-skipping is one of the most promising approaches for the treatment of DMD because of its capacity to correct the reading frame and restore dystrophin expression, which has been demonstrated in vitro and in vivo. In particular, peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) have recently been shown to induce widespread high levels of dystrophin expression in the mdx mouse model. Here, we report the efficiency of the PPMO-mediated exon-skipping approach in the utrophin/dystrophin double-knockout mouse (dKO) mouse, which is a much more severe and progressive mouse model of DMD. Repeated intraperitoneal (i.p.) injections of a PPMO targeted to exon 23 of dystrophin pre-mRNA in dKO mice induce a near-normal level of dystrophin expression in all muscles examined, except for the cardiac muscle, resulting in a considerable improvement of their muscle function and dystrophic pathology. These findings suggest great potential for PPMOs in systemic treatment of the DMD phenotype.
Figures
References
-
- Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H., and , Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988;2:90–95. - PubMed
-
- Dunckley MG, Manoharan M, Villiet P, Eperon IC., and , Dickson G. Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet. 1998;7:1083–1090. - PubMed
-
- Lu QL, Mann CJ, Lou F, Bou-Gharios G, Morris GE, Xue SA, et al. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med. 2003;9:1009–1014. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
