Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;39(11):811-25.
doi: 10.3109/00498250903134443.

Metabolite screening of aromatic amine hair dyes using in vitro hepatic models

Affiliations

Metabolite screening of aromatic amine hair dyes using in vitro hepatic models

J A Skare et al. Xenobiotica. 2009 Nov.

Abstract

Aromatic amines and heterocyclic amines are widely used ingredients in permanent hair dyes. However, little has been published on their potential for oxidation via hepatic cytochrome P450s. Therefore, the authors screened nine such compounds for their potential to undergo oxidative metabolism in human liver microsomes. Toluene-2,5-diamine (TDA), p-aminophenol, m-aminophenol, p-methylaminophenol, N,N'-bis(2-hydroxyethyl)-p-phenylenediamine, and 1-hydroxyethyl-4,5-diaminopyrazole showed no evidence of oxidative metabolism. Oxidized metabolites of 4-amino-2-hydroxytoluene (AHT), 2-methyl-5- hydroxyethylaminophenol (MHEAP), and phenyl methyl pyrazolone (PMP) were detected, but there was no evidence of beta-nicotinamide adenine dinucleotide phosphate (NADPH)-dependent covalent binding to microsomal protein, suggesting that these are not reactive metabolites. Metabolism of AHT, MHEAP, PMP, and TDA was further studied in human hepatocytes. All these compounds underwent conjugation, but no oxidative metabolites were found. The results suggest that none of the hair dye ingredients tested showed evidence of hepatic metabolism to potentially biologically reactive oxidized metabolites.

PubMed Disclaimer

Publication types

LinkOut - more resources