Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Nov-Dec;33(3-4):231-8.
doi: 10.1016/j.jaut.2009.10.001. Epub 2009 Oct 21.

Emerging roles of TLR7 and TLR9 in murine SLE

Affiliations
Review

Emerging roles of TLR7 and TLR9 in murine SLE

Marie-Laure Santiago-Raber et al. J Autoimmun. 2009 Nov-Dec.

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by B cell hyperactivity leading to the production of various autoantibodies and subsequent development of glomerulonephritis, i.e. lupus nephritis. Among the principal targets of autoantibodies produced in murine SLE are nucleic acid-protein complexes, such as chromatin and ribonucleoproteins, and the envelope glycoprotein gp70 of endogenous retroviruses. The preferential production of these autoantibodies is apparently promoted by the presence of genetic abnormalities leading to defects in the elimination of apoptotic cells and to an enhanced expression of endogenous retroviruses. Moreover, recent studies revealed that the innate receptors TLR7 and TLR9 are critically involved in the activation of dendritic cells and autoreactive B cells through the recognition of endogenous DNA- or RNA-containing antigens and subsequent development of autoimmune responses against nuclear autoantigens. Furthermore, the regulation of autoimmune responses against endogenous retroviral gp70 by TLR7 suggested the implication of endogenous retroviruses in this autoimmune response. Clearly, further elucidation of the precise molecular role of TLR7 and TLR9 in the development of autoimmune responses will help to develop novel therapeutic strategies and targets for SLE.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources