Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;109(1):59-66.
doi: 10.1016/j.tripleo.2009.07.036. Epub 2009 Oct 20.

Effect of hyperbaric oxygen on demineralized bone matrix and biphasic calcium phosphate bone substitutes

Affiliations

Effect of hyperbaric oxygen on demineralized bone matrix and biphasic calcium phosphate bone substitutes

Ahmed Jan et al. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 Jan.

Abstract

Objectives: The aim of this study was to assess the possible effect of hyperbaric oxygen (HBO) on the healing of critical-sized defects that were grafted with demineralized bone matrix (DBM) combined with Pluronic F127 (F127) to form a gel or putty, or a commercially available biphasic calcium phosphate (BCP), mixed either with blood or F127 to form a putty.

Study design: Twenty New Zealand White rabbits were randomly divided into 2 groups of 10 animals each. Bilateral 15-mm calvarial defects were created in the parietal bones of each animal, resulting in 40 critical-sized defects. Group I defects were grafted with either DBM putty or DBM gel. Group II defects were grafted with either BCP or BCP putty. Five animals from each group received HBO treatment (100% oxygen, at 2.4 ATA) for 90 minutes per day 5 days a week for 4 weeks. The other 5 animals in each group served as a normobaric (NBO) controls, breathing only room air. All animals were humanely killed at 6 weeks. The calvariae were removed and analyzed by micro computed tomography (mCT) and histomorphometry.

Results: mCT analysis indicated a higher bone mineral content (BMC, P < .05), bone volume fraction (BVF; P < .001), and bone mineral density (BMD; P < .001) of the defects grafted with BCP rather than DBM. Furthermore, the voxels that were counted as bone had a higher tissue mineral density (TMD) in the BCP- than in the DBM-filled defects (P < .001). Histologically complete bony union over the defects was observed in all specimens. Histomorphometric analysis showed that DBM-filled defects had more new bone (P < .007) and marrow (P < .001), and reduced fibrous tissue compared with the BCP defects (P < .001) under NBO conditions. HBO treatment reduced the amount of fibrous tissue in BCP filled defects (P < .05), approaching levels similar to that in matching DBM-filled defects. HBO also resulted in a small but significant increase in new bone in DBM-grafted defects (P < .05).

Conclusion: Use of DBM or BCP promoted healing in these critical-sized defects. Hyperbaric oxygen therapy resulted in a slight increase in new bone in DBM-grafted defects and much larger reduction in fibrous tissue and matching increases in marrow in BCP-grafted defects, possibly through increased promotion of angiogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types