Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;47(12):3985-90.
doi: 10.1128/JCM.01229-09. Epub 2009 Oct 21.

Pyrosequencing for rapid detection of Mycobacterium tuberculosis resistance to rifampin, isoniazid, and fluoroquinolones

Affiliations

Pyrosequencing for rapid detection of Mycobacterium tuberculosis resistance to rifampin, isoniazid, and fluoroquinolones

Lulette Tricia C Bravo et al. J Clin Microbiol. 2009 Dec.

Abstract

After isoniazid and rifampin (rifampicin), the next pivotal drug class in Mycobacterium tuberculosis treatment is the fluoroquinolone class. Mutations in resistance-determining regions (RDR) of the rpoB, katG, and gyrA genes occur with frequencies of 97%, 50%, and 85% among M. tuberculosis isolates resistant to rifampin, isoniazid, and fluoroquinolones, respectively. Sequences are highly conserved, and certain mutations correlate well with phenotypic resistance. We developed a pyrosequencing assay to determine M. tuberculosis genotypic resistance to rifampin, isoniazid, and fluoroquinolones. We characterized 102 M. tuberculosis clinical isolates from the Philippines for susceptibility to rifampin, isoniazid, and ofloxacin by using the conventional submerged-disk proportion method and validated our pyrosequencing assay using these isolates. DNA was extracted and amplified by using PCR primers directed toward the RDR of the rpoB, katG, and gyrA genes, and pyrosequencing was performed on the extracts. The M. tuberculosis H37Rv strain (ATCC 25618) was used as the reference strain. The sensitivities and specificities of pyrosequencing were 96.7% and 97.3%, 63.8% and 100%, and 70.0% and 100% for the detection of resistance to rifampin, isoniazid, and ofloxacin, respectively. Pyrosequencing is thus a rapid and accurate method for detecting M. tuberculosis resistance to these three drugs.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Diagrammatic representation of RDR and corresponding positions of PCR and sequencing primers. The numbers underneath the codons signify the codon number and hot-spot regions. F, forward; R, reverse; R1, first rpoB sequencing primer; R2, second rpoB sequencing primer; K1, katG sequencing primer; G1, gyrA sequencing primer.
FIG. 2.
FIG. 2.
Pyrograms illustrating representative sequences of each RDR. In each instance, the upper panel shows the sequence for the reference ATCC strain, and the lower panel shows the sequence for a resistant isolate. (A) Rifampin RDR with a mutation in codon 533. (B) Ofloxacin RDR with a mutation in codon 94. Also note the polymorphism in codon 95 of the ofloxacin-resistant isolate. (C) Isoniazid RDR with a mutation in codon 315.

Similar articles

Cited by

References

    1. Cavusoglu, C., A. Turhan, P. Akinci, and I. Soyler. 2006. Evaluation of the Genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis isolates. J. Clin. Microbiol. 44:2338-2342. - PMC - PubMed
    1. Centers for Disease Control and Prevention. 2006. Notice to readers: revised definition of extensively drug-resistant tuberculosis. MMWR Morb. Mortal. Wkly. Rep. 55:1176.
    1. Conde, M. B., A. Efron, C. Loredo, G. R. De Souza, N. P. Graca, M. C. Cezar, M. Ram, M. A. Chaudhary, W. R. Bishai, A. L. Kritski, and R. E. Chaisson. 2009. Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled phase II trial. Lancet 373:1183-1189. - PMC - PubMed
    1. Donald, P. R., and P. D. van Helden. 2009. The global burden of tuberculosis—combating drug resistance in difficult times. N. Engl. J. Med. 360:2393-2395. - PubMed
    1. Giannoni, F., E. Iona, F. Sementilli, L. Brunori, M. Pardini, G. B. Migliori, G. Orefici, and L. Fattorini. 2005. Evaluation of a new line probe assay for rapid identification of gyrA mutations in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 49:2928-2933. - PMC - PubMed

Publication types

LinkOut - more resources