Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling
- PMID: 19849717
- DOI: 10.1111/j.1567-1364.2009.00587.x
Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling
Abstract
The ability to elicit a fast intracellular signal leading to an adaptive response is crucial for the survival of microorganisms in response to changing environmental conditions. Therefore, in order to sense changes in nutrient availability, the yeast Saccharomyces cerevisiae has evolved three different classes of nutrient-sensing proteins acting at the plasma membrane: G protein-coupled receptors or classical receptor proteins, which detect the presence of certain nutrients and activate signal transduction in association with a G protein; nontransporting transceptors, i.e. nutrient carrier homologues with only a receptor function, previously called nutrient sensors; and transporting transceptors, i.e. active nutrient carriers that combine the functions of a nutrient transporter and receptor. Here, we provide an updated overview of the proteins involved in sensing nutrients for rapid activation of the protein kinase A pathway, which belong to the first and the third category, and we also provide a comparison with the best-known examples of the second category, the nontransporting transceptors, which control the expression of the regular transporters for the nutrient sensed by these proteins.
Similar articles
-
The eukaryotic plasma membrane as a nutrient-sensing device.Trends Biochem Sci. 2004 Oct;29(10):556-64. doi: 10.1016/j.tibs.2004.08.010. Trends Biochem Sci. 2004. PMID: 15450611 Review.
-
Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae.Eukaryot Cell. 2008 Feb;7(2):286-93. doi: 10.1128/EC.00276-07. Epub 2007 Sep 21. Eukaryot Cell. 2008. PMID: 17890371 Free PMC article.
-
Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae.J Biosci Bioeng. 2007 Oct;104(4):245-50. doi: 10.1263/jbb.104.245. J Biosci Bioeng. 2007. PMID: 18023794 Review.
-
PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability.Mol Microbiol. 2005 Feb;55(3):862-80. doi: 10.1111/j.1365-2958.2004.04429.x. Mol Microbiol. 2005. PMID: 15661010
-
Nutrient signals driving cell growth.Curr Opin Cell Biol. 2008 Dec;20(6):678-87. doi: 10.1016/j.ceb.2008.09.009. Epub 2008 Nov 1. Curr Opin Cell Biol. 2008. PMID: 18930818 Review.
Cited by
-
Peptides induce persistent signaling from endosomes by a nutrient transceptor.Nat Chem Biol. 2012 Mar 4;8(4):400-8. doi: 10.1038/nchembio.910. Nat Chem Biol. 2012. PMID: 22388927
-
Ammonium is toxic for aging yeast cells, inducing death and shortening of the chronological lifespan.PLoS One. 2012;7(5):e37090. doi: 10.1371/journal.pone.0037090. Epub 2012 May 15. PLoS One. 2012. PMID: 22615903 Free PMC article.
-
Rsp5 and Mdm30 reshape the mitochondrial network in response to age-induced vacuole stress.Mol Biol Cell. 2019 Aug 1;30(17):2141-2154. doi: 10.1091/mbc.E19-02-0094. Epub 2019 May 29. Mol Biol Cell. 2019. PMID: 31141470 Free PMC article.
-
Nutrient transceptors physically interact with the yeast S6/protein kinase B homolog, Sch9, a TOR kinase target.Biochem J. 2021 Jan 29;478(2):357-375. doi: 10.1042/BCJ20200722. Biochem J. 2021. PMID: 33394033 Free PMC article.
-
Emerging Roles of Nucleoside Transporters.Front Pharmacol. 2018 Jun 6;9:606. doi: 10.3389/fphar.2018.00606. eCollection 2018. Front Pharmacol. 2018. PMID: 29928232 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases