Epidemiological evidence for the links between sleep, circadian rhythms and metabolism
- PMID: 19849800
- PMCID: PMC4075056
- DOI: 10.1111/j.1467-789X.2009.00663.x
Epidemiological evidence for the links between sleep, circadian rhythms and metabolism
Abstract
Epidemiological data reveal parallel trends of decreasing sleep duration and increases in metabolic disorders such as obesity, diabetes and hypertension. There is growing evidence that these trends are mechanistically related. The seasonal expression of the thrifty genotype provides a conceptual framework to connect circadian and circannual rhythms, sleep and metabolism. Experimental studies have shown sleep deprivation to decrease leptin, increase ghrelin, increase appetite, compromise insulin sensitivity and raise blood pressure. Habitually short sleep durations could lead to insulin resistance by increasing sympathetic nervous system activity, raising evening cortisol levels and decreasing cerebral glucose utilization that over time could compromise beta-cell function and lead to diabetes. Prolonged short sleep durations could lead to hypertension through raised 24-h blood pressure and increased salt retention resulting in structural adaptations and the entrainment of the cardiovascular system to operate at an elevated pressure equilibrium. Cross-sectional and longitudinal epidemiological studies have shown associations between short sleep duration and obesity, diabetes and hypertension. If metabolic changes resulting from sleep restriction function to increase body weight, insulin resistance and blood pressure then interventions designed to increase the amount and improve the quality of sleep could serve as treatments and as primary preventative measures for metabolic disorders.
Conflict of interest statement
None.
References
-
- Meier AH, Cinotta AH. Circadian rhythms regulate the expression of the thrifty genotype/phenotype. Diabetes Rev. 1996;4:464–487.
-
- Kreier F, Yilmaz A, Kalsbeek A, Romijn JA, Sauerwein HP, Fliers E, Buijs RM. Hypothesis: shifting the equilibrium from activity to food leads to autonomic unbalance and the metabolic syndrome. Diabetes. 2003;52:2652–2656. - PubMed
-
- Kreier F, Kap YS, Mettenleiter TC, van Heijningen C, van der Vliet J, Kalsbeek A, Sauerwein HP, Fliers E, Romijn JA, Buijs RM. Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology. 2006;147:1140–1147. - PubMed
-
- la Fleur SE, Kalsbeek A, Wortel J, Buijs RM. Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res. 2000;871:50–56. - PubMed
-
- Buijs RM, Chun SJ, Niijima A, Romijn HJ, Nagai K. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol. 2001;431:405–423. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources