Contribution of the LIM domain and nebulin-repeats to the interaction of Lasp-2 with actin filaments and focal adhesions
- PMID: 19851499
- PMCID: PMC2761545
- DOI: 10.1371/journal.pone.0007530
Contribution of the LIM domain and nebulin-repeats to the interaction of Lasp-2 with actin filaments and focal adhesions
Abstract
Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s) responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1) retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.
Conflict of interest statement
Figures





References
-
- Small JV, Stradal T, Vignal E, Rottner K. The lamellipodium: where motility begins. Trends Cell Biol. 2002;12:112–120. - PubMed
-
- Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112:453–465. - PubMed
-
- Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol. 2008;9:446–454. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources