Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor
- PMID: 19854855
- PMCID: PMC2789585
- DOI: 10.1093/rheumatology/kep329
Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor
Abstract
RA is a chronic, debilitating disease in which articular inflammation and joint destruction are accompanied by systemic manifestations including anaemia, fatigue and osteoporosis. IL-6 is expressed abundantly in the SF of RA patients and is thought to mediate many of the local and systemic effects of this disease. Unlike a number of other cytokines, IL-6 can activate cells through both membrane-bound (IL-6R) and soluble receptors (sIL-6R), thus widening the number of cell types responsive to this cytokine. Indeed, trans-signalling, where IL-6 binds to the sIL-6R, homodimerizes with glycoprotein 130 subunits and induces signal transduction, has been found to play a key role in acute and chronic inflammation. Elevated levels of IL-6 and sIL-6R in the SF of RA patients can increase the risk of joint destruction and, at the joint level, IL-6/sIL-6R can stimulate pannus development through increased VEGF expression and increase bone resorption as a result of osteoclastogenesis. Systemic effects of IL-6, albeit through conventional or trans-signalling, include regulation of acute-phase protein synthesis, as well as hepcidin production and stimulation of the hypothalamo-pituitary-adrenal axis, the latter two actions potentially leading to anaemia and fatigue, respectively. This review aims to provide an insight into the biological effects of IL-6 in RA, examining how IL-6 can induce the articular and systemic effects of this disease.
Figures
References
-
- McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7:429–42. - PubMed
-
- Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol. 2006;80:227–36. - PubMed
-
- Chen Z, O'Shea JJ. Th17 cells: a new fate for differentiating helper T cells. Immunol Res. 2008;41:87–102. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
