Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan 5;266(1):198-206.

Unidirectional Na+, Ca2+, and K+ fluxes through the bovine rod outer segment Na-Ca-K exchanger

Affiliations
  • PMID: 1985893
Free article

Unidirectional Na+, Ca2+, and K+ fluxes through the bovine rod outer segment Na-Ca-K exchanger

P P Schnetkamp et al. J Biol Chem. .
Free article

Abstract

The properties of the Na-Ca exchanger in the plasma membrane of rod outer segments isolated from bovine retinas (ROS) were studied. Unidirectional Ca2+, Na+, and K+ fluxes were measured with radioisotopes and atomic absorption spectroscopy. We measured K+ fluxes associated with the Ca-Ca self-exchange mode of the Na-Ca exchanger to corroborate our previous conclusion that the ROS Na-Ca exchanger differs from Na-Ca exchangers in other tissues by its ability to transport K+ (Schnetkamp, P. P. M., Basu, D. K. & Szerencsei, R. T. (1989) Am. J. Physiol. 257, C153-C157). The Na-Ca-K exchanger was the only functional cation transporter in the plasma membrane of bovine ROS with an upper limit of a flux of 10(5) cations/ROS/s or a current of 0.01 pA contributed by other cation channels, pumps, or carriers; cation fluxes via the Na-Ca-K exchanger amounted to 5 x 10(6) cations/ROS/s or a current of 1 pA. Ca2+ efflux via the forward mode of the Na-Ca-K exchanger did not operate with a fixed single stoichiometry. 1) The Na/Ca coupling ratio was increased from three to four when ionophores were added that could provide electrical compensation for the inward Na-Ca exchange current. 2) The K/Ca coupling ratio could vary by at least 2-fold as a function of the external Na+ and K+ concentration. The results are interpreted in terms of a model that can account for the variable Ca/K coupling ratio: we conclude that the Ca2+ site of the exchanger can translocate independent of translocation of the K+ site, whereas translocation of the K+ site requires occupation of the Ca2+ site, but not its translocation. The results are discussed with respect to the physiological role of Na-Ca-K exchange in rod photoreceptors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources