Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Jan 5;266(1):34-9.

Use of the polymerase chain reaction to clone and sequence a cDNA encoding the bovine alpha 3 chain of type IV collagen

Affiliations
  • PMID: 1985905
Free article
Comparative Study

Use of the polymerase chain reaction to clone and sequence a cDNA encoding the bovine alpha 3 chain of type IV collagen

K E Morrison et al. J Biol Chem. .
Free article

Abstract

A novel type IV collagen, alpha 3(IV), has previously been isolated from a collagenase digest of bovine and human glomerular and lens basement membranes. The cloning and sequencing of a cDNA encoding the alpha 3(IV) chain is described here. Using the polymerase chain reaction, with primers derived from the known 27-residue bovine alpha 3(IV) amino acid sequence, a 68-base pair bovine genomic fragment (KEM68) which encodes the known peptide sequence, was synthesized. KEM68 was then used to screen a bovine lens cDNA library and a 1.5-kilobase partial cDNA clone obtained, encoding 471 residues of the bovine alpha 3(IV) chain: 238 residues from the triple helical collagenous domain and all 233 residues of the noncollagenous domain. The collagenous repeat sequence has three interruptions, coinciding with those in the alpha 1(IV) chain. The noncollagenous domain has 12 cysteine residues in identical positions to those of other type IV collagens and 71, 61, and 70% overall similarity with the human alpha 1(IV), alpha 2(IV), and alpha 5(IV) chains. The noncollagenous domain of alpha 3(IV) is of particular interest as it appears to be the component of glomerular basement membrane that reacts maximally with the Goodpasture antibody. Furthermore, such antigenicity is absent from collagenase digests of the glomerular basement membrane of some patients with Alport syndrome. The alpha 3(IV) cDNA clone described here now permits study of the molecular pathology of COL4A3 in Alport syndrome.

PubMed Disclaimer

Publication types

LinkOut - more resources