Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;49(11):2481-8.
doi: 10.1021/ci900203n.

Application of random forest approach to QSAR prediction of aquatic toxicity

Affiliations

Application of random forest approach to QSAR prediction of aquatic toxicity

Pavel G Polishchuk et al. J Chem Inf Model. 2009 Nov.

Abstract

This work is devoted to the application of the random forest approach to QSAR analysis of aquatic toxicity of chemical compounds tested on Tetrahymena pyriformis. The simplex representation of the molecular structure approach implemented in HiT QSAR Software was used for descriptors generation on a two-dimensional level. Adequate models based on simplex descriptors and the RF statistical approach were obtained on a modeling set of 644 compounds. Model predictivity was validated on two external test sets of 339 and 110 compounds. The high impact of lipophilicity and polarizability of investigated compounds on toxicity was determined. It was shown that RF models were tolerant for insertion of irrelevant descriptors as well as for randomization of some part of toxicity values that were representing a "noise". The fast procedure of optimization of the number of trees in the random forest has been proposed. The discussed RF model had comparable or better statistical characteristics than the corresponding PLS or KNN models.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources