Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Nov;13(11):1320-30.

Mechanisms of drug resistance in Mycobacterium tuberculosis

Affiliations
  • PMID: 19861002
Review

Mechanisms of drug resistance in Mycobacterium tuberculosis

Y Zhang et al. Int J Tuberc Lung Dis. 2009 Nov.

Abstract

The increasing emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) in the era of human immunodeficiency virus (HIV) infection presents a major threat to effective control of TB. Drug resistance in Mycobacterium tuberculosis arises from spontaneous chromosomal mutations at low frequency. Clinical drug-resistant TB largely occurs as a result of man-made selection during disease treatment of these genetic alterations through erratic drug supply, suboptimal physician prescription and poor patient adherence. Molecular mechanisms of drug resistance have been elucidated for the major first- and second-line drugs rifampicin, isoniazid, pyrazinamide, ethambutol, the aminoglycosides and the fluoroquinolones. The relationship between drug resistance in M. tuberculosis strains and their virulence/transmissibility needs to be further investigated. Understanding the mechanisms of drug resistance in M. tuberculosis would enable the development of rapid molecular diagnostic tools and furnish possible insights into new drug development for the treatment of TB.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources