Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar;22(3):349-56.
doi: 10.1016/j.cellsig.2009.10.004.

Oxygen-sensing under the influence of nitric oxide

Affiliations
Review

Oxygen-sensing under the influence of nitric oxide

Utta Berchner-Pfannschmidt et al. Cell Signal. 2010 Mar.

Abstract

The transcription factor complex Hypoxia inducible factor 1 (HIF-1) controls the expression of most genes involved in adaptation to hypoxic conditions. Oxygen-dependency is maintained by prolyl- and asparagyl-4-hydroxylases (PHDs/FIH-1) belonging to the superfamily of iron(II) and 2-oxoglutarate dependent dioxygenases. Hydroxylation of the HIF-1alpha subunit by PHDs and FIH-1 leads to its degradation and inactivation. By hydroxylating HIF-1alpha in an oxygen-dependent manner PHDs and FIH-1 function as oxygen-sensing enzymes of HIF signalling. Besides molecular oxygen nitric oxide (NO), a mediator of the inflammatory response, can regulate HIF-1alpha accumulation, HIF-1 activity and HIF-1 dependent target gene expression. Recent studies addressing regulation of HIF-1 by NO revealed a complex and paradoxical picture. Acute exposure of cells to high doses of NO increased HIF-1alpha levels irrespective of the residing oxygen concentration whereas prolonged exposure to NO or low doses of this radical reduced HIF-1alpha accumulation even under hypoxic conditions. Several mechanisms were found to contribute to this paradoxical role of NO in regulating HIF-1. More recent studies support the view that NO regulates HIF-1 by modulating the activity of the oxygen-sensor enzymes PHDs and FIH-1. NO dependent HIF-1alpha accumulation under normoxia was due to direct inhibition of PHDs and FIH-1 most likely by competitive binding of NO to the ferrous iron in the catalytically active center of the enzymes. In contrast, reduced HIF-1alpha accumulation by NO under hypoxia was mainly due to enhanced HIF-1alpha degradation by induction of PHD activity. Three major mechanisms are discussed to be involved in enhancing the PHD activity despite the lack of oxygen: (1) NO mediated induction of a HIF-1 dependent feedback loop leading to newly expressed PHD2 and enhanced nuclear localization, (2) O2-redistribution towards PHDs after inhibition of mitochondrial respiration by NO, (3) reactivation of PHD activity by a NO mediated increase of iron and 2-oxoglutarate and/or involvement of reactive oxygen and/or nitrogen species.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources