Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Jan;11(1):166-74.
doi: 10.1128/mcb.11.1.166-174.1991.

Macronuclei and micronuclei in Tetrahymena thermophila contain high-mobility-group-like chromosomal proteins containing a highly conserved eleven-amino-acid putative DNA-binding sequence

Affiliations
Comparative Study

Macronuclei and micronuclei in Tetrahymena thermophila contain high-mobility-group-like chromosomal proteins containing a highly conserved eleven-amino-acid putative DNA-binding sequence

I G Schulman et al. Mol Cell Biol. 1991 Jan.

Abstract

HMG (high-mobility-group protein) B and HMG C are abundant nonhistone chromosomal proteins isolated from Tetrahymena thermophila macronuclei with solubilities, molecular weights, and amino acid compositions like those of vertebrate HMG proteins. Genomic clones encoding each of these proteins have been sequenced. Both are single-copy genes that encode single polyadenylated messages whose amounts are 10 to 15 times greater in growing cells than in starved, nongrowing cells. The derived amino acid sequences of HMG B and HMG C contain a highly conserved sequence, the HMG 1 box, found in vertebrate HMGs 1 and 2, and we speculate that this sequence may represent a novel, previously unrecognized DNA-binding motif in this class of chromosomal proteins. Like HMGs 1 and 2, HMGs B and C contain a high percentage of aromatic amino acids. However, the Tetrahymena HMGs are small, are associated with nucleosome core particles, and can be specifically extracted from macronuclei by elutive intercalation, properties associated with vertebrate HMGs 14 and 17, not HMGs 1 and 2. Thus, it appears that these Tetrahymena proteins have features in common with both of the major subgroups of higher eucaryotic HMG proteins. Surprisingly, a linker histone found exclusively in transcriptionally inactive micronuclei also has several HMG-like characteristics, including the ability to be specifically extracted from nuclei by elutive intercalation and the presence of the HMG 1 box. This finding suggests that at least in T. thermophila, proteins with HMG-like properties are not restricted to regions of transcriptionally active chromatin.

PubMed Disclaimer

Similar articles

Cited by

References

    1. EMBO J. 1985 Dec 30;4(13B):3867-72 - PubMed
    1. Nucleic Acids Res. 1986;14 Suppl:r119-49 - PubMed
    1. J Mol Biol. 1986 Feb 20;187(4):591-601 - PubMed
    1. Nucleic Acids Res. 1986 Oct 10;14(19):7597-615 - PubMed
    1. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8472-6 - PubMed

Publication types

LinkOut - more resources