Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr;31(3):209-19.
doi: 10.1002/bem.20550.

Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation

Affiliations

Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation

Li-Yi Sun et al. Bioelectromagnetics. 2010 Apr.

Abstract

Osteogenesis is a complex series of events involving the differentiation of mesenchymal stem cells to generate new bone. In this study, we examined the effect of pulsed electromagnetic fields (PEMFs) on cell proliferation, alkaline phosphatase (ALP) activity, mineralization of the extracellular matrix, and gene expression in bone marrow mesenchymal stem cells (BMMSCs) during osteogenic differentiation. Exposure of BMMSCs to PEMFs increased cell proliferation by 29.6% compared to untreated cells at day 1 of differentiation. Semi-quantitative RT-PCR indicated that PEMFs significantly altered temporal expression of osteogenesis-related genes, including a 2.7-fold increase in expression of the key osteogenesis regulatory gene cbfa1, compared to untreated controls. In addition, exposure to PEMFs significantly increased ALP expression during the early stages of osteogenesis and substantially enhanced mineralization near the midpoint of osteogenesis. These results suggest that PEMFs enhance early cell proliferation in BMMSC-mediated osteogenesis, and accelerate the osteogenesis.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources