Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1971 May 1;49(2):247-63.
doi: 10.1083/jcb.49.2.247.

A pattern of epidermal cell migration during wound healing

Affiliations

A pattern of epidermal cell migration during wound healing

W S Krawczyk. J Cell Biol. .

Abstract

Epidermal repair during wound healing is under investigation at both the light and electron microscopic levels. Suction-induced subepidermal blisters have been employed to produce two complementary model wound healing systems. These two model systems are: (a) intact subepidermal blisters, and (b) opened subepidermal blisters (the blister roof was removed immediately after induction, leaving an open wound). From these studies a pattern of movement for epidermal cells in wound healing is proposed. This pattern of movement is the same for both model systems. Epidermal cells appear to move by rolling or sliding over one another. Fine fibers oriented in the cortical cytoplasm may play an important role in the movement of these epidermal cells. Also instrumental in mediating this movement are intercellular junctions (desmosomes) and a firm attachment to a substrate through hemidesmosomes. In the intact subepidermal blisters hemidesmosomal attachment is made to a continuous and homogeneous substrate, the retained basal lamina. In the opened subepidermal blisters contact of epidermal cells is made to a discontinuous substrate composed of sporadic areas of fibrin and underlying mesenchymal cells.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biophys Biochem Cytol. 1961 Feb;9:409-14 - PubMed
    1. Int Rev Cytol. 1964;16:61-131 - PubMed
    1. J Cell Biol. 1968 Oct;39(1):135-51 - PubMed
    1. Acta Derm Venereol. 1968;48(4):290-302 - PubMed
    1. J Cell Biol. 1966 Jan;28(1):51-72 - PubMed