Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 29;38(6):2253-9.
doi: 10.2134/jeq2009.0038. Print 2009 Nov-Dec.

Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions

Affiliations

Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions

Bojeong Kim et al. J Environ Qual. .

Abstract

A field pot experiment was conducted to investigate the interactive phytotoxicity of soil Cu and Zn on soybean plants [Glycine max (L.) Merr.]. Two soils (Arkport sandy loam [coarse-loamy, mixed, active, mesic Lamellic Hapludalf] and Hudson silty clay loam [fine, illitic, mesic Glossaquic Hapludalf]) spiked with Cu, Zn, and combinations of both to reach the final soil metal range of 0 to 400 mg kg(-1) were tested in a 2-yr bioassay after 1 yr of soil-metal equilibration in the field. The soluble and easily-extractable fraction of soil Zn (or Cu), estimated by dilute CaCl2, increased linearly in response to the total Zn (or Cu) added. This linearity was, however, strongly affected where soils were treated with both metals in combination, most notably for Zn, as approximately 50% more of soil Zn was extracted into solution when the Cu level was high. Consequently, added Zn is less likely to be stabilized by aging than added Cu when both metals are present in field soils. The predictive model relating soil metal extractability to plant Zn concentration also revealed a significant Cu-Zn interaction. By contrast, the interaction between the two metals contributed little to explain plant Cu uptake. The additive action of soil Cu and Zn was of considerable importance in explaining plant biomass reduction. This work clearly demonstrates the critical roles of the properties of the soil, the nature of the metal, and the level of other toxic metals present on the development of differential phytotoxicity due to soil Cu and Zn.

PubMed Disclaimer

LinkOut - more resources