Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers
- PMID: 19876817
- DOI: 10.1387/ijdb.092853cv
Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers
Abstract
The vertebrate Central Nervous System (CNS) originates from the embryonic dorsal ectoderm. Differentiation of the neural epithelium from the ectoderm and the formation of the neural plate constitute the first phase of a complex process called neurulation which culminates in the formation of the neural tube, the anlage of the CNS in sauropsids and mammals (for review see Smith and Schoenwolf, 1997; Colas and Schoenwolf, 2001). At neural plate and neural tube stages, local signaling centers in the neuroepithelium, known as secondary organizers, refine the antero-posterior specification of different neural territories (for review see Echevarria et al., 2003; Stern et al.,2006; Woltering and Durston, 2008). In this review, we will describe the principle aspects of CNS development in birds and mammals, starting from early stages of embryogenesis (gastrulation and neurulation) and culminating with the formation of a variety of different regions which contribute to the structural complexity of the brain (regionalization and morphogenesis). We will pay special attention to the cellular and molecular mechanisms involved in neural tube regionalization and the key role played by localized secondary organizers in the patterning of neural primordia.
Similar articles
-
Towards a cellular and molecular understanding of neurulation.Dev Dyn. 2001 Jun;221(2):117-45. doi: 10.1002/dvdy.1144. Dev Dyn. 2001. PMID: 11376482 Review.
-
Cellular aspects of brain development.Neurotoxicology. 1989 Fall;10(3):307-20. Neurotoxicology. 1989. PMID: 2696895 Review.
-
Roof plate-dependent patterning of the vertebrate dorsal central nervous system.Dev Biol. 2005 Jan 15;277(2):287-95. doi: 10.1016/j.ydbio.2004.10.011. Dev Biol. 2005. PMID: 15617675 Review.
-
Ectodermal patterning in vertebrate embryos.Dev Biol. 1997 Feb 1;182(1):5-20. doi: 10.1006/dbio.1996.8445. Dev Biol. 1997. PMID: 9073437 Review.
-
An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation.Development. 2005 Sep;132(17):3885-94. doi: 10.1242/dev.01959. Epub 2005 Aug 3. Development. 2005. PMID: 16079156
Cited by
-
Multipotent caudal neural progenitors derived from human pluripotent stem cells that give rise to lineages of the central and peripheral nervous system.Stem Cells. 2015 Jun;33(6):1759-70. doi: 10.1002/stem.1991. Stem Cells. 2015. PMID: 25753817 Free PMC article.
-
Molecular regionalization of the diencephalon.Front Neurosci. 2012 May 25;6:73. doi: 10.3389/fnins.2012.00073. eCollection 2012. Front Neurosci. 2012. PMID: 22654731 Free PMC article.
-
Transcriptional Profile of the Developing Subthalamic Nucleus.eNeuro. 2022 Oct 18;9(5):ENEURO.0193-22.2022. doi: 10.1523/ENEURO.0193-22.2022. Print 2022 Sep-Oct. eNeuro. 2022. PMID: 36257692 Free PMC article. Review.
-
Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain.PLoS Biol. 2017 Apr 19;15(4):e2001573. doi: 10.1371/journal.pbio.2001573. eCollection 2017 Apr. PLoS Biol. 2017. PMID: 28422959 Free PMC article.
-
Cellular commitment in the developing cerebellum.Front Cell Neurosci. 2015 Jan 12;8:450. doi: 10.3389/fncel.2014.00450. eCollection 2014. Front Cell Neurosci. 2015. PMID: 25628535 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources