Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 30;28(30):3829-43.
doi: 10.1002/sim.3755.

Analyzing longitudinal data with patients in different disease states during follow-up and death as final state

Affiliations

Analyzing longitudinal data with patients in different disease states during follow-up and death as final state

Saskia le Cessie et al. Stat Med. .

Abstract

This paper considers the analysis of longitudinal data complicated by the fact that during follow-up patients can be in different disease states, such as remission, relapse or death. If both the response of interest (for example, quality of life (QOL)) and the amount of missing data depend on this disease state, ignoring the disease state will yield biased means. Death as the final state is an additional complication because no measurements after death are taken and often the outcome of interest is undefined after death. We discuss a new approach to model these types of data. In our approach the probability to be in each of the different disease states over time is estimated using multi-state models. In each different disease state, the conditional mean given the disease state is modeled directly. Generalized estimation equations are used to estimate the parameters of the conditional means, with inverse probability weights to account for unobserved responses. This approach shows the effect of the disease state on the longitudinal response. Furthermore, it yields estimates of the overall mean response over time, either conditionally on being alive or after inputting predefined values for the response after death. Graphical methods to visualize the joint distribution of disease state and response are discussed. As an example, the analysis of a Dutch randomized clinical trial for breast cancer is considered. In this study, the long-term impact on the QOL for two different chemotherapy schedules was studied with three disease states: alive without relapse, alive after relapse and death.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources