Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009;11(3):281-95.
doi: 10.31887/DCNS.2009.11.3/mbelanger.

The role of astroglia in neuroprotection

Affiliations
Review

The role of astroglia in neuroprotection

Mireille Bélanger et al. Dialogues Clin Neurosci. 2009.

Abstract

Astrocytes are the main neural cell type responsible for the maintenance of brain homeostasis. They form highly organized anatomical domains that are interconnected into extensive networks. These features, along with the expression of a wide array of receptors, transporters, and ion channels, ideally position them to sense and dynamically modulate neuronal activity. Astrocytes cooperate with neurons on several levels, including neurotransmitter trafficking and recycling, ion homeostasis, energy metabolism, and defense against oxidative stress. The critical dependence of neurons upon their constant support confers astrocytes with intrinsic neuroprotective properties which are discussed here. Conversely, pathogenic stimuli may disturb astrocytic function, thus compromising neuronal functionality and viability. Using neuroinflammation, Alzheimer's disease, and hepatic encephalopathy as examples, we discuss how astrocytic defense mechanisms may be overwhelmed in pathological conditions, contributing to disease progression.

Los astrocitos constituyen el principal tipo celular neural responsable del mantenimiento de la homeostasis cerebral. Ellos forman áreas anatómicas altamente organizadas que están interconectadas en extensas redes. Estas caracierísticas, junto con la expresión de una gran variedad de receptores, transportadores y canales iónicos, los favorece de manera ideal para detectar y modular dínámicamente la actívídad neuronal. Los asirocitos cooperan con las neuronas a varios níveles, incluyendo el tránsito y reciclaje de neurotransmisores, la homeostasis iónica, la neuroenergética y la defensa contra el estrés oxidativo. Las neuronas dependen en forma crítica de su soporte constante, lo que le confiere a los astrocitos propiedades neuroprotectoras intrinsecas, las cuales también se discuten aqui. A la inversa, los estímulos patogénicos pueden alterar la función astrocítica, comprometiendo así la funcionalidad y la viabilidad neuronal. Se utilizan como ejemplos la neuroinflamación, la Enfermedad de Alzheimer y la encefalopatía hepática para discutir cómo los mecanismos de defensa de los astrocitos pueden estar sobrepasados en las condiciones patológicas, lo que contribuye a la progresión hacia la enfermedad.

Les astrocytes sont le principal type de cellules neuronales responsables de l'entretien de l'homéostasie cérébrale. Ils s'interconnectent en réseaux étendus, formant des régions anatomiques très organisées. Cette organisation qui s'accompagne de toute une série de récepteurs, transporteurs et canaux ioniques, les met en position idéale pour pressentir et moduler de façon dynamique l'activité neuronale. Les astrocytes coopèrent avec les neurones à différents niveaux, dont le recyclage et la circulation des neurotransmetteurs, l'homéostasie ionique, la neuroénergétique et la défense contre le stress oxydant. Les neurones sont très dépendants du soutien constant des astrocytes, ce qui donne à ces derniers des propriétés neuroprotectrices que nous analysons dans cet article. À l'opposé, lorsque des stimuli pathogènes troublent la fonction astrocytaire, la fonctionnalité et la viabilité des neurones sont compromises. En prenant pour exemples la neuro-inflammation, la maladie d'Alzheimer et l'encéphalopathie hépatique, nous montrerons comment les mécanismes de défense astrocytaires peuvent être débordés en situation pathologique, participant ainsi à la progression de la maladie.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.. Human astrocytes are more complex then their rodent counterparts. Typical human (A) and mouse (B) protoplasmic astrocytes are shown at the same scale for comparison. Based on glial fibrillary acidic protein (GFAP) immunostaining, human protoplasmic astrocytes are 2.5-fold larger and project 10 times more main processes than mouse astrocytes. (GFAP, white. Scale bar, 20 µM). Adapted from ref 2: Oberheim NA, Takano T, Han X, et al. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29:3276-3287. Copyright © Society for Neuroscience 2009
Figure 2.
Figure 2.. Simplified representation of the main roles of astrocytes in brain homeostasis. Pink box: glutamate-glutamine cycle. Astrocytic excitatory amino acid transporters (EAATs) are responsible for the uptake of a large fraction of glutamate at the synapse. Glutamate is converted into glutamine by glutamine synthetase (GS) and shuttled back to neurons for glutamate resynthesis. Blue boxes: Lactate shuttle. Glutamate uptake by astrocytes is accompanied by Na+ entry which is counteracted by the action of the Na+/K+ ATPase. The resulting increase in ADP/ATP ratio triggers anaerobic glucose utilization in astrocytes and glucose uptake from the circulation through the glucose transporter GLUT1 . The lactate produced is shuttled to neurons through monocarboxylate transporters (mainly MCT-1 in astrocytes and MCT-2 in neurons), where it can be used as an energy substrate after its conversion to pyruvate. Yellow box: pH buffering. Abundant carbonic anhydrase (CA) in astrocytes converts CO2 into H+ and HCO3 -. Two HCO3 - are transported into the extracellular space along vyith one Na'via the Na+-HCO3 - cotransporter (NBC), thereby increasing the extracellular buffering power. Protons left in the glial compartment may drive the transport of lactate outside of astrocytes and into neurons through MCTs. Excess H+ in neurons is extruded via sodium-hydrogen exchange (NHE). Orange box: K+ buffering. Astrocytes buffer excess K+ released into the extracellular space as a result of neuronal activity. Potassium ions travel through the astrocytic syncitium down their concentration gradient and are released in sites of lover concentration. Green box: Glutathione metabolism. Astrocytes release glutathione (GSH) in the extracellular space where it is cleaved by the astrocytic ectoenzyme γ-glutamyl transpeptidase (γGT). The resulting CysGly selves as a precursor for neuronal GSH synthesis. X represents an acceptor for the γ-glutamyl moiety in the reaction catalyzed by γGT.
Figure 3.
Figure 3.. Astrocytic endfeet in humans. (A) Protoplasmic astrocytes project specialized processes tov/ards the intraparenchymal vasculature (part of a blood vessel is highlighted in the yellow box) (glial fibrillary acidic protein - (GFAP), white; nuclei (4',6diamidino-2-phenylindole - DAPI), blue. Scale bar, 20 µM). (B) Astrocytic endfeet are in close contact with blood vessels and almost entirely cover their surface (GFAP, white. Scale bar, 20 µM). Adapted from ref 2: Oberheim NA, Takano T, Han X, et al. Uniquely hominid features of adult human astrocytes, J Neurosci. 2009;29:3276-3287. Copyright © Society for Neuroscience 2009

References

    1. Halassa MM., Fellin T., Takano H., Dong JH., Haydon PG. Synaptic islands defined by the territory of a single astrocyte. J Neurosci. 2007;27:6473–6477. - PMC - PubMed
    1. Oberheim NA., Takano T., Han X., et al. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29:3276–3287. - PMC - PubMed
    1. Nedergaard M., Ransom B., Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26:523–530. - PubMed
    1. Rouach N., Koulakoff A., Giaume C. Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem int. 2004;45:265–272. - PubMed
    1. Gadea A., Lopez-Colome AM. Glial transporters for glutamate, glycine, and GABA III. Glycine transporters. J Neurosci Res. 2001;64:218–222. - PubMed

Publication types

Substances