Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan;260(1 Pt 1):G142-7.
doi: 10.1152/ajpgi.1991.260.1.G142.

Differential effects of calcium ions and calcium phosphate on cytotoxicity of bile acids

Affiliations

Differential effects of calcium ions and calcium phosphate on cytotoxicity of bile acids

R Van der Meer et al. Am J Physiol. 1991 Jan.

Abstract

Unconjugated secondary bile acids can promote colon cancer by damaging colonic mucosa and consequently increasing epithelial proliferation. It has been proposed that dietary calcium inactivates intestinal bile acids either by a Ca2(+)-dependent precipitation or by binding to insoluble calcium phosphate (CaPi). We studied the molecular mechanisms of these opposing hypotheses by using hemolysis of erythrocytes as a model parameter for cytotoxicity. Washed human erythrocytes were incubated for 15 min with buffered media (pH 7.4) containing increasing amounts of different bile acids. Deconjugation and 7 alpha-dehydroxylation of mixtures of glycine- or taurine-conjugated cholate and chenodeoxycholate drastically increased their cytotoxicity. Parallel measurements, using a fluorescent micellar probe, indicated that micellar aggregation is a prerequisite for this bile acid-induced lysis. Ca2+ concentrations up to 15 mM did not precipitate bile acids but stimulated cytotoxicity of both deoxycholate (DC) and its glycine conjugate (GDC). Cytotoxicity of the taurine conjugate (TDC) was stimulated to a much lesser extent. Increasing amounts of CaPi precipitated micellar DC and GDC, but not TDC, and consequently inhibited only cytotoxicity of the former two. These findings indicate that 1) hydrophobicity and micellar aggregation are important determinants of bile acid-induced cytotoxicity that explain the high cytotoxic potential of secondary bile acids in colon, and 2) cytotoxicity of bile acids is stimulated by free Ca2+ and inhibited by CaPi. This inhibition is due to binding of carboxylic (including secondary) bile acids to CaPi.

PubMed Disclaimer

Publication types

LinkOut - more resources