Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan 1;51(1):265-73.

Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions

Affiliations
  • PMID: 1988088

Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions

J R Less et al. Cancer Res. .

Abstract

The objective of this work was to introduce a tumor vessel classification scheme and to provide the first quantitative measurements of vessel branching patterns and the related vascular dimensions in a mammary carcinoma. Mammary adenocarcinoma R3230AC tumors, grown in the rat ovarian tissue-isolated tumor preparation, were infused with Batson's No. 17 polymer and maintained at an intravascular pressure of 50 mm Hg during polymerization. Maceration of the tumor in KOH allowed visualization of the vasculature. The vessel branching patterns, lengths, and diameters were measured in four tumors (4-5 g). A centrifugal ordering scheme was devised specifically to account for the unique features of tumor microvascular network topology. The arterial networks revealed two types of branching patterns. One type of arteriolar network exhibited decreasing vessel diameters and lengths with increasing branch order. In a second type of network, the diameter and length of the vessels displayed fluctuations in both variables at higher generations. Avascular and poorly vascularized regions with sparse capillary supply were present in the tumors, but analysis of several capillary networks in vascularized regions revealed a nonplanar meshwork of interconnected vessels. The meshworks were composed of vessels with a mean segment length of 67 microns, a mean diameter of 10 microns, and a mean intercapillary distance of 49 microns. Capillary path lengths ranged from 0.5 to 1.5 mm. Thus, tumor capillary diameter was greater than that in most normal tissues and, in the regions where capillary networks existed, intercapillary spacing was in the normal range. In the venous network, diameters decreased from 650 to 20 microns for the first to ninth order venules. Venule length decreased from 5 to 0.5 mm for first to fourth order but was fairly uniform (less than 500 microns) for higher orders. In conclusion, solid tumor vascular architecture, while exhibiting several features that are similar to those observed in normal tissues, has others that are not commonly seen in normal tissues. These features of the tumor microcirculation may lead to heterogeneous local hematocrits, oxygen tensions, and drug concentrations, thus reducing the efficacy of present day cancer therapies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources