Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media
- PMID: 19884370
- PMCID: PMC2798528
- DOI: 10.1128/AAC.01256-09
Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media
Abstract
This study compared nine susceptibility testing methods and 12 endpoints for anidulafungin, caspofungin, and micafungin with the same collection of blinded FKS hot spot mutant (n = 29) and wild-type isolates (n = 94). The susceptibility tests included EUCAST Edef 7.1, agar dilution, Etest, and disk diffusion with RPMI-1640 plus 2% glucose (2G) and IsoSensitest-2G media and CLSI M27A-3. Microdilution plates were read after 24 and 48 h. The following test parameters were evaluated: fks hot spot mutants overlapping the wild-type distribution, distance between the two populations, number of very major errors (VMEs; fks mutants misclassified as susceptible), and major errors (MEs; wild-type isolates classified as resistant) using a wild-type-upper-limit value (WT-UL) (two twofold-dilutions higher than the MIC(50)) as the susceptibility breakpoint. The methods with the lowest number of errors (given as VMEs/MEs) across the three echinocandins were CLSI (12%/1%), agar dilution with RPMI-2G medium (14%/0%), and Etest with RPMI-2G medium (8%/3%). The fewest errors overall were observed for anidulafungin (4%/1% for EUCAST, 4%/3% for CLSI, and 3%/9% for Etest with RPMI-2G). For micafungin, VME rates of 10 to 71% were observed. For caspofungin, agar dilution with either medium was superior (VMEs/MEs of 0%/1%), while CLSI, EUCAST with IsoSensitest-2G medium, and Etest were less optimal (VMEs of 7%, 10%, and 10%, respectively). Applying the CLSI breakpoint (S <OR= 2 microg/ml) for CLSI results, 89.2% fks hot spot mutants were classified as anidulafungin susceptible, 60.7% as caspofungin susceptible, and 92.9% as micafungin susceptible. In conclusion, no test was perfect, but anidulafungin susceptibility testing using the WT-UL to define susceptibility reliably identified fks hot spot mutants.
References
-
- Almirante, B., D. Rodriguez, M. Cuenca-Estrella, M. Almela, F. Sanchez, J. Ayats, C. Alonso-Tarres, J. L. Rodriguez-Tudela, and A. Pahissa. 2006. Epidemiology, risk factors, and prognosis of Candida parapsilosis bloodstream infections: case-control population-based surveillance study of patients in Barcelona, Spain, from 2002 to 2003. J. Clin. Microbiol. 44:1681-1685. doi:10.1128/JCM.44.5.1681-1685.2006. - DOI - PMC - PubMed
-
- Arendrup, M., T. Horn, and N. Frimodt-Moller. 2002. In vivo pathogenicity of eight medically relevant Candida species in an animal model. Infection 30:286-291. - PubMed
-
- Arendrup, M. C., K. Fuursted, B. Gahrn-Hansen, I. M. Jensen, J. D. Knudsen, B. Lundgren, H. C. Schonheyder, and M. Tvede. 2005. Seminational surveillance of fungemia in Denmark: notably high rates of fungemia and numbers of isolates with reduced azole susceptibility. J. Clin. Microbiol. 43:4434-4440. - PMC - PubMed
-
- Arendrup, M. C., K. Fuursted, B. Gahrn-Hansen, H. C. Schonheyder, J. D. Knudsen, I. M. Jensen, B. Bruun, J. J. Christensen, and H. K. Johansen. 2008. Semi-national surveillance of fungaemia in Denmark 2004-2006: increasing incidence of fungaemia and numbers of isolates with reduced azole susceptibility. Clin. Microbiol. Infect. 14:487-494. - PubMed
-
- Arendrup, M. C., G. Garcia-Effron, W. Buzina, K. L. Mortensen, N. Reiter, C. Lundin, H. E. Jensen, C. Lass-Florl, D. S. Perlin, and B. Bruun. 2009. Breakthrough Aspergillus fumigatus and Candida albicans double infection during caspofungin treatment: laboratory characteristics and implication for susceptibility testing. Antimicrob. Agents Chemother. 53:1185-1193. doi:10.1128/AAC.01292-08. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous