Nanocrystalline hydroxyapatite for bone repair: an animal study
- PMID: 19885643
- DOI: 10.1007/s10856-009-3859-1
Nanocrystalline hydroxyapatite for bone repair: an animal study
Abstract
Abstract Hydroxyapatite has become the most common material to replace bone or to guide its regeneration. Nanocrystalline hydroxyapatite suspension had been introduced in the clinical use recently under the assumption that small dimension of crystals could improve resorption. We studied the resorption and osteointegration of the nanocrystalline hydroxyapatite Ostim in a rabbit model. The material was implanted either alone or in combination with autogenic or allogenic bone into distal rabbit femora. After survival time of 2, 4, 6, 8 and 12 weeks the implants had been evaluated by light and electron microscopy. We observed a direct bone contact as well as inclusion into soft tissue. But we could observe no or only marginal decay and no remarkable resorption in the vast majority of implants. In situ the nanocrystalline material mostly formed densely packed agglomerates which were preserved once included in bone or connective tissue. A serious side effect was the initiation of osteolysis in the femora far from the implantation site causing extended defects in the cortical bone.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
- Full Text Sources
- Other Literature Sources
 
        