Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan 5;217(1):39-51.
doi: 10.1016/0022-2836(91)90609-a.

Recognition of unusual DNA structures by human DNA (cytosine-5)methyltransferase

Affiliations

Recognition of unusual DNA structures by human DNA (cytosine-5)methyltransferase

S S Smith et al. J Mol Biol. .

Abstract

The symmetry of the responses of the human DNA (cytosine-5)methyltransferase to alternative placements of 5-methylcytosine in model oligodeoxynucleotide duplexes containing unusual structures has been examined. The results of these experiments more clearly define the DNA recognition specificity of the enzyme. A simple three-nucleotide recognition motif within the CG dinucleotide pair can be identified in each enzymatically methylated duplex. The data can be summarized by numbering the four nucleotides in the dinucleotide pair thus: 1 4/2 3. With reference to this numbering scheme, position 1 can be occupied by cytosine or 5-methylcytosine; position 2 can be occupied by guanosine or inosine; position 3, the site of enzymatic methylation, can be occupied only by cytosine; and position 4 can be occupied by guanosine, inosine, O6-methylguanosine, cytosine, adenosine, an abasic site, or the 3' hydroxyl group at the end of a gapped molecule. Replacing the guanosine normally found at position 4 with any of the moieties introduces unusual (non-Watson-Crick) pairing at position 3 and generally enhances methylation of the cytosine at that site. The exceptional facility of the enzyme in actively methylating unusual DNA structures suggests that the evolution of the DNA methyltransferase, and perhaps DNA methylation itself, may be linked to the biological occurrence of unusual DNA structures.

PubMed Disclaimer

Publication types

LinkOut - more resources