Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009;11(5):212.
doi: 10.1186/bcr2413.

Androgens and the breast

Affiliations
Review

Androgens and the breast

Constantine Dimitrakakis et al. Breast Cancer Res. 2009.

Abstract

Androgens have important physiological effects in women while at the same time they may be implicated in breast cancer pathologies. However, data on the effects of androgens on mammary epithelial proliferation and/or breast cancer incidence are not in full agreement. We performed a literature review evaluating current clinical, genetic and epidemiological data regarding the role of androgens in mammary growth and neoplasia. Epidemiological studies appear to have significant methodological limitations and thus provide inconclusive results. The study of molecular defects involving androgenic pathways in breast cancer is still in its infancy. Clinical and nonhuman primate studies suggest that androgens inhibit mammary epithelial proliferation and breast growth while conventional estrogen treatment suppresses endogenous androgens. Abundant clinical evidence suggests that androgens normally inhibit mammary epithelial proliferation and breast growth. Suppression of androgens using conventional estrogen treatment may thus enhance estrogenic breast stimulation and possibly breast cancer risk. Addition of testosterone to the usual hormone therapy regimen may diminish the estrogen/progestin increase in breast cancer risk but the impact of this combined use on mammary gland homeostasis still needs evaluation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic design of the androgen receptor gene (top) and protein (below). The polymorphic trinucleotide repeat site (CAG) is indicated in green at the left. Trans-activating function (TAF), DNA-binding (DBD) and ligand-binding domains (LBD) are labeled.
Figure 2
Figure 2
Average estradiol (E2) and testosterone (T) levels across the female lifespan. Y-axis, level in picograms; X-axis, age in years. Dashed lines predict changes in T and E2 hormone levels resulting from estrogen replacement therapy (ERT) beginning at menopause.
Figure 3
Figure 3
Mammary epithelial proliferation shown by Ki67 immunoreactivity (brown dots) in ovariectomized monkeys treated with (a) placebo (Con), (b) estradiol (E2), (c) E2 and progesterone (P4), (d) tamoxifen (Tam) and (e) E2 and testosterone (T). (f) Quantification of the Ki67 proliferation index. Proliferation is increased with E2 or E2 and P4 (E/P), while this increase is attenuated by the addition of T to E2 (E/T). All differences are statistically significant when compared to the placebo group. Data from Zhou and colleagues [53].

References

    1. Davis SR, Moreau M, Kroll R, Bouchard C, Panay N, Gass M, Braunstein GD, Hirschberg AL, Rodenberg C, Pack S, Koch H, Moufarege A, Studd J. APHRODITE Study Team. Testosterone for low libido in postmenopausal women not taking estrogen. N Engl J Med. 2008;359:2005–2017. doi: 10.1056/NEJMoa0707302. - DOI - PubMed
    1. Schover LR. Androgen therapy for loss of desire in women: is the benefit worth the breast cancer risk? Fertil Steril. 2008;90:129–140. doi: 10.1016/j.fertnstert.2007.05.057. - DOI - PubMed
    1. Dimitrakakis C, Zhou J, Wang J, Belanger A, LaBrie F, Cheng C, Powell D, Bondy C. A physiologic role for testosterone in limiting estrogenic stimulation of the breast. Menopause. 2003;10:292–298. doi: 10.1097/01.GME.0000055522.67459.89. - DOI - PubMed
    1. Lobo RA. Androgens in postmenopausal women: production, possible role, and replacement options. Obstet Gynecol Surv. 2001;56:361–376. doi: 10.1097/00006254-200106000-00022. - DOI - PubMed
    1. Kadlubar F, Berkowitz G, Delongchamp R, Green B, Wang C, Wolff MS. The putative high activity variant, CYP3A4*1B, predicts the onset of puberty in young girls. Proc Am Assoc Cancer Res. 2001;42:408.