Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;132(Pt 12):3467-80.
doi: 10.1093/brain/awp279.

Imaging studies in congenital anophthalmia reveal preservation of brain architecture in 'visual' cortex

Affiliations

Imaging studies in congenital anophthalmia reveal preservation of brain architecture in 'visual' cortex

Holly Bridge et al. Brain. 2009 Dec.

Abstract

The functional specialization of the human brain means that many regions are dedicated to processing a single sensory modality. When a modality is absent, as in congenital total blindness, 'visual' regions can be reliably activated by non-visual stimuli. The connections underlying this functional adaptation, however, remain elusive. In this study, using structural and diffusion-weighted magnetic resonance imaging, we investigated the structural differences in the brains of six bilaterally anophthalmic subjects compared with sighted subjects. Surprisingly, the gross structural differences in the brains were small, even in the occipital lobe where only a small region of the primary visual cortex showed a bilateral reduction in grey matter volume in the anophthalmic subjects compared with controls. Regions of increased cortical thickness were apparent on the banks of the Calcarine sulcus, but not in the fundus. Subcortically, the white matter volume around the optic tract and internal capsule in anophthalmic subjects showed a large decrease, yet the optic radiation volume did not differ significantly. However, the white matter integrity, as measured with fractional anisotropy showed an extensive reduction throughout the brain in the anophthalmic subjects, with the greatest difference in the optic radiations. In apparent contradiction to the latter finding, the connectivity between the lateral geniculate nucleus and primary visual cortex measured with diffusion tractography did not differ between the two populations. However, these findings can be reconciled by a demonstration that at least some of the reduction in fractional anisotropy in the optic radiation is due to an increase in the strength of fibres crossing the radiations. In summary, the major changes in the 'visual' brain in anophthalmic subjects may be subcortical, although the evidence of decreased fractional anisotropy and increased crossing fibres could indicate considerable re-organization.

PubMed Disclaimer

Publication types

MeSH terms