Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces
- PMID: 19892976
- DOI: 10.1126/science.1180297
Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces
Abstract
The catalytic activity of metal clusters of different sizes adsorbed on oxide surfaces can be explored systematically by using model catalysts. We studied the temperature-programmed reaction of CO with O2 catalyzed by Pd clusters (Pd(n), for n = 1, 2, 4, 7, 10, 16, 20, and 25) that were size-selected in the gas phase and deposited on rutile TiO2(110). X-ray photoemission spectroscopy revealed that the Pd 3d binding energy varied nonmonotonically with cluster size and that the changes correlated with strong size variations in CO oxidation activity. Taking final-state effects into account, low activity was correlated with higher-than-expected Pd 3d binding energy, which is attributed to a particularly stable valence electronic structure; electron transfer from the TiO2 support to the Pd clusters also occurs. Ion scattering shows that small clusters form single-layer islands on the surface and that formation of a second layer begins to occur for clusters larger than Pd10.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources