Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus
- PMID: 19894210
- DOI: 10.1002/yea.1729
Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus
Abstract
Kluyveromyces marxianus DMKU3-1042 is a thermotolerant yeast strain suitable for high-temperature ethanol fermentation and genetic engineering with linear DNA. We have developed a highly efficient random gene integration method with a frequency that exceeds 2.5 x 10(6) transformants/microg linear DNA, a figure comparable to what is observed with autonomously replicating plasmid transformation in Saccharomyces cerevisiae. To establish the mechanism of random integration in DMKU3-1042, we identified and deleted the K. marxianus KU70 gene, which is known to be involved in the non-homologous end-joining (NHEJ) pathway. In yeast lacking KU70, high-frequency non-homologous gene integration was abolished and the Kmku70 mutants showed 82-95% homologous gene targeting efficiencies using homologous sequences of 40-1000 bp. These results indicate that the highly efficient NHEJ pathway can be utilized with random gene disruption techniques such as transposon mutagenesis and plasmid-free gene manipulations in K. marxianus.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources