Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct 28;131(16):164706.
doi: 10.1063/1.3254199.

State-resolved manipulations of optical gain in semiconductor quantum dots: Size universality, gain tailoring, and surface effects

Affiliations

State-resolved manipulations of optical gain in semiconductor quantum dots: Size universality, gain tailoring, and surface effects

Ryan R Cooney et al. J Chem Phys. .

Abstract

Optical gain in strongly confined colloidal semiconductor quantum dots is measured using state resolved pump/probe spectroscopy. Though size tunable optical amplification has been previously reported for these materials, the influence of confinement enhanced multiexcitonic interactions has limited prior demonstrations to specific particle sizes or host media. Here we show that the influence of the interfering multiexcitonic interactions, and hence the development of optical gain, is dependent on the identity of the initially prescribed excitonic state. By maintaining a constant excitonic state in the size tunable electronic structure of these materials, we recover the predicted universal development of optical gain, reflected by size-independent occupation thresholds, and differential gains. In addition, we explicitly compare the influence of surface passivation on the development and lifetime of the optical gain. Furthermore, we introduce a general, state-resolved pumping scheme which enables control over the optical gain spectrum. The capacity to manipulate the optical gain spectra of these spherically confined systems is evident in both the measured stimulated emission and amplified spontaneous emission. We anticipate that state-resolved optical excitation will be a useful method of enabling the development and manipulation of optical gain in any quantized nanostructure.

PubMed Disclaimer

LinkOut - more resources