Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;185(2):401-19.
doi: 10.1111/j.1469-8137.2009.03070.x. Epub 2009 Nov 5.

Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies

Affiliations
Free article

Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies

Yolanda T Chong et al. New Phytol. 2010 Jan.
Free article

Abstract

*The exocyst is a complex of eight proteins (Sec3p, Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, Exo70p and Exo84p) involved in tethering vesicles to the plasma membrane during regulated or polarized secretion. Here, the plant exocyst complex was explored in phylogenetic, expression, and subcellular localization studies. *Evolutionary relationships of predicted exocyst subunits were examined in the complete genomes of Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Physcomitrella patens. Furthermore, detailed expression profiling of the A. thaliana microarray databases was performed and subcellular localization patterns were studied. *Several plant exocyst subunit genes appear to have undergone gene expansion in a common ancestor and subsequent duplication events in independent plant lineages. Expression profiling revealed that the A. thaliana Exo70 gene family exhibits dynamic expression patterns, while the remaining exocyst subunit genes displayed more static profiles. Subcellular localization patterns for A. thaliana exocyst subunits ranged from cytosolic to endosomal compartments (with enrichment in the early endosomes and the trans-Golgi network). Interestingly, two endosomal-localized AtExo70 proteins also recruited other exocyst subunits to these compartments. *Overall subcellular localization patterns were observed that were also found in yeast and animal cells, and this, coupled with the evolutionary relationships, suggests that the exocyst may perform similar conserved functions in plants.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources