Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 1;342(1):135-41.
doi: 10.1016/j.jcis.2009.09.065. Epub 2009 Oct 4.

Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material

Affiliations

Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material

Vinod K Gupta et al. J Colloid Interface Sci. .

Abstract

Low cost fertilizer industry waste material called carbon slurry, produced in generators of fuel oil-based industrial generators, was converted into an effective and efficient adsorbent for the removal of hexavalent chromium(VI) from aqueous solutions. The waste was chemically treated, activated, characterized, and used for the adsorption of chromium. The work involves batch experiments to investigate the effect of contact time, pH, temperature, concentration, and adsorbent dose on the extent of adsorption by carbon slurry. The maximum adsorption was found at 70min, 2.0 pH, 4.0g/L dose, and 303K temperature. Maximum adsorption capacity (15.24mg/g) of Cr(VI) on carbon slurry was observed at 100mg/L initial Cr(VI) concentration. Langmuir and Freundlich adsorption isotherm models were applied to analyze adsorption data, and both were found to be applicable to this adsorption system, in terms of relatively high regression values. Thermodynamic parameters showed that the adsorption of Cr(VI) onto carbon slurry was feasible, spontaneous, and exothermic under the studied conditions. Kinetics of adsorption was found to follow the pseudo-second-order rate equation. Column studies have been carried out to compare these with the batch capacities. The recovery of Cr(VI) and chemical regeneration of the spent column have also been tried. In all, the results indicated that the adsorbent used in this work proved to be effective material for the treatment of chromium-bearing aqueous solutions.

PubMed Disclaimer

LinkOut - more resources