Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift
- PMID: 19900932
- PMCID: PMC2784927
- DOI: 10.1126/science.1178258
Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift
Abstract
Rapid antigenic evolution in the influenza A virus hemagglutinin precludes effective vaccination with existing vaccines. To understand this phenomenon, we passaged virus in mice immunized with influenza vaccine. Neutralizing antibodies selected mutants with single-amino acid hemagglutinin substitutions that increased virus binding to cell surface glycan receptors. Passaging these high-avidity binding mutants in naïve mice, but not immune mice, selected for additional hemagglutinin substitutions that decreased cellular receptor binding avidity. Analyzing a panel of monoclonal antibody hemagglutinin escape mutants revealed a positive correlation between receptor binding avidity and escape from polyclonal antibodies. We propose that in response to variation in neutralizing antibody pressure between individuals, influenza A virus evolves by adjusting receptor binding avidity via amino acid substitutions throughout the hemagglutinin globular domain, many of which simultaneously alter antigenicity.
Figures



Similar articles
-
L226Q Mutation on Influenza H7N9 Virus Hemagglutinin Increases Receptor-Binding Avidity and Leads to Biased Antigenicity Evaluation.J Virol. 2020 Sep 29;94(20):e00667-20. doi: 10.1128/JVI.00667-20. Print 2020 Sep 29. J Virol. 2020. PMID: 32796071 Free PMC article.
-
Antibody pressure by a human monoclonal antibody targeting the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of a virus with increased virulence in mice.mBio. 2012 May 29;3(3):e00120-12. doi: 10.1128/mBio.00120-12. Print 2012. mBio. 2012. PMID: 22647789 Free PMC article.
-
Mutations in the Hemagglutinin Stalk Domain Do Not Permit Escape from a Protective, Stalk-Based Vaccine-Induced Immune Response in the Mouse Model.mBio. 2021 Feb 16;12(1):e03617-20. doi: 10.1128/mBio.03617-20. mBio. 2021. PMID: 33593972 Free PMC article.
-
Identification of amino acid substitutions supporting antigenic change of influenza A(H1N1)pdm09 viruses.J Virol. 2015 Apr;89(7):3763-75. doi: 10.1128/JVI.02962-14. Epub 2015 Jan 21. J Virol. 2015. PMID: 25609810 Free PMC article.
-
Novel universal influenza virus vaccine approaches.Curr Opin Virol. 2016 Apr;17:95-103. doi: 10.1016/j.coviro.2016.02.002. Epub 2016 Feb 27. Curr Opin Virol. 2016. PMID: 26927813 Free PMC article. Review.
Cited by
-
Deciphering the rule of antigen-antibody amino acid interaction.Front Immunol. 2023 Dec 4;14:1269916. doi: 10.3389/fimmu.2023.1269916. eCollection 2023. Front Immunol. 2023. PMID: 38111576 Free PMC article.
-
Human monoclonal antibodies to pandemic 1957 H2N2 and pandemic 1968 H3N2 influenza viruses.J Virol. 2012 Jun;86(11):6334-40. doi: 10.1128/JVI.07158-11. Epub 2012 Mar 28. J Virol. 2012. PMID: 22457520 Free PMC article.
-
Structural differences between the avian and human H7N9 hemagglutinin proteins are attributable to modifications in salt bridge formation: a computational study with implications in viral evolution.PLoS One. 2013 Oct 7;8(10):e76764. doi: 10.1371/journal.pone.0076764. eCollection 2013. PLoS One. 2013. PMID: 24116152 Free PMC article.
-
Why are there so few (or so many) circulating coronaviruses?Trends Immunol. 2021 Sep;42(9):751-763. doi: 10.1016/j.it.2021.07.001. Epub 2021 Jul 12. Trends Immunol. 2021. PMID: 34366247 Free PMC article. Review.
-
From optical bench to cageside: intravital microscopy on the long road to rational vaccine design.Immunol Rev. 2011 Jan;239(1):209-20. doi: 10.1111/j.1600-065X.2010.00973.x. Immunol Rev. 2011. PMID: 21198674 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources