Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation
- PMID: 19902144
- PMCID: PMC11115696
- DOI: 10.1007/s00018-009-0190-4
Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation
Abstract
Poly-ADP-ribose polymerases (PARPs) use NAD(+) as substrate to generate polymers of ADP-ribose. We targeted the catalytic domain of human PARP1 as molecular NAD(+) detector into cellular organelles. Immunochemical detection of polymers demonstrated distinct subcellular NAD(+) pools in mitochondria, peroxisomes and, surprisingly, in the endoplasmic reticulum and the Golgi complex. Polymers did not accumulate within the mitochondrial intermembrane space or the cytosol. We demonstrate the suitability of this compartment-specific NAD(+) and poly-ADP-ribose turnover to establish intra-organellar protein localization. For overexpressed proteins, genetically endowed with PARP activity, detection of polymers indicates segregation from the cytosol and consequently intra-organellar residence. In mitochondria, polymer build-up reveals matrix localization of the PARP fusion protein. Compared to presently used fusion tags for subcellular protein localization, these are substantial improvements in resolution. We thus established a novel molecular tool applicable for studies of subcellular NAD metabolism and protein localization.
Figures







Similar articles
-
Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools.Methods Mol Biol. 2017;1608:45-56. doi: 10.1007/978-1-4939-6993-7_4. Methods Mol Biol. 2017. PMID: 28695502
-
Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix.Mol Cell Biol. 2008 Jan;28(2):814-24. doi: 10.1128/MCB.01766-07. Epub 2007 Nov 8. Mol Cell Biol. 2008. PMID: 17991898 Free PMC article.
-
Intra-mitochondrial poly(ADP-ribosyl)ation: potential role for alpha-ketoglutarate dehydrogenase.Mitochondrion. 2009 Apr;9(2):159-64. doi: 10.1016/j.mito.2009.01.013. Epub 2009 Feb 8. Mitochondrion. 2009. PMID: 19460292
-
New Insights into the Roles of NAD+-Poly(ADP-ribose) Metabolism and Poly(ADP-ribose) Glycohydrolase.Curr Protein Pept Sci. 2016;17(7):668-682. doi: 10.2174/1389203717666160419150014. Curr Protein Pept Sci. 2016. PMID: 27817743 Review.
-
Poly(ADP-ribose): PARadigms and PARadoxes.Mol Aspects Med. 2013 Dec;34(6):1046-65. doi: 10.1016/j.mam.2012.12.010. Epub 2013 Jan 2. Mol Aspects Med. 2013. PMID: 23290998 Review.
Cited by
-
Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence.Cell Metab. 2018 Mar 6;27(3):529-547. doi: 10.1016/j.cmet.2018.02.011. Cell Metab. 2018. PMID: 29514064 Free PMC article. Review.
-
Regulation of vascular endothelial growth factor by metabolic context of the cell.Glycoconj J. 2014 Oct;31(6-7):427-34. doi: 10.1007/s10719-014-9547-5. Glycoconj J. 2014. PMID: 25214198 Review.
-
Accounting for NAD Concentrations in Genome-Scale Metabolic Models Captures Important Metabolic Alterations in NAD-Depleted Systems.Biomolecules. 2024 May 20;14(5):602. doi: 10.3390/biom14050602. Biomolecules. 2024. PMID: 38786009 Free PMC article.
-
ADP-ribosylation of arginine.Amino Acids. 2011 Jul;41(2):257-69. doi: 10.1007/s00726-010-0676-2. Epub 2010 Jul 21. Amino Acids. 2011. PMID: 20652610 Free PMC article. Review.
-
Regulation of Glucose Metabolism by NAD+ and ADP-Ribosylation.Cells. 2019 Aug 13;8(8):890. doi: 10.3390/cells8080890. Cells. 2019. PMID: 31412683 Free PMC article. Review.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous