Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore
- PMID: 1990431
- DOI: 10.1126/science.1990431
Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore
Abstract
Rhodopsin and the visual pigments are a distinct group within the family of G-protein-linked receptors in that they have a covalently bound ligand, the 11-cis-retinal chromophore, whereas all of the other receptors bind their agonists through noncovalent interactions. The retinal chromophore in rhodopsin is bound by means of a protonated Schiff base linkage to the epsilon-amino group of Lys-296. Two rhodopsin mutants have been constructed, K296G and K296A, in which the covalent linkage to the chromophore is removed. Both mutants form a pigment with an absorption spectrum close to that of the wild type when reconstituted with the Schiff base of an n-alkylamine and 11-cis-retinal. In addition, the pigment formed from K296G and the n-propylamine Schiff base of 11-cis-retinal was found to activate transducin in a light-dependent manner, with 30 to 40% of the specific activity measured for the wild-type protein. It appears that the covalent bond is not essential for binding of the chromophore or for catalytic activation of transducin.
Similar articles
-
Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.Biochemistry. 1994 Aug 16;33(32):9753-61. doi: 10.1021/bi00198a046. Biochemistry. 1994. PMID: 8068654
-
Partial agonist activity of 11-cis-retinal in rhodopsin mutants.J Biol Chem. 1997 Sep 12;272(37):23081-5. doi: 10.1074/jbc.272.37.23081. J Biol Chem. 1997. PMID: 9287308
-
Constitutively active mutants of rhodopsin.Neuron. 1992 Oct;9(4):719-25. doi: 10.1016/0896-6273(92)90034-b. Neuron. 1992. PMID: 1356370
-
Photophysiological functions of visual pigments.Adv Biophys. 1984;17:5-67. doi: 10.1016/0065-227x(84)90024-8. Adv Biophys. 1984. PMID: 6242325 Review.
-
Mechanism of G-protein activation by rhodopsin.Photochem Photobiol. 2007 Jan-Feb;83(1):70-5. doi: 10.1562/2006-03-22-IR-854. Photochem Photobiol. 2007. PMID: 16800722 Review.
Cited by
-
The ligand-binding domain of rhodopsin and other G protein-linked receptors.J Bioenerg Biomembr. 1992 Apr;24(2):211-7. doi: 10.1007/BF00762679. J Bioenerg Biomembr. 1992. PMID: 1326517 Review.
-
A comparative study of rhodopsin function in the great bowerbird (Ptilonorhynchus nuchalis): Spectral tuning and light-activated kinetics.Protein Sci. 2016 Jul;25(7):1308-18. doi: 10.1002/pro.2902. Epub 2016 Mar 4. Protein Sci. 2016. PMID: 26889650 Free PMC article.
-
Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins.Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13351-5. doi: 10.1073/pnas.1306826110. Epub 2013 Jul 31. Proc Natl Acad Sci U S A. 2013. PMID: 23904486 Free PMC article.
-
Covalent bond between ligand and receptor required for efficient activation in rhodopsin.J Biol Chem. 2010 Mar 12;285(11):8114-21. doi: 10.1074/jbc.M109.063875. Epub 2009 Dec 30. J Biol Chem. 2010. PMID: 20042594 Free PMC article.
-
Location of the retinal chromophore in the activated state of rhodopsin*.J Biol Chem. 2009 Apr 10;284(15):10190-201. doi: 10.1074/jbc.M805725200. Epub 2009 Jan 28. J Biol Chem. 2009. PMID: 19176531 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources