Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;7(1):23-34.
doi: 10.1080/15459620903349073.

Comparison of free radical generation by pre- and post-sintered cemented carbide particles

Affiliations

Comparison of free radical generation by pre- and post-sintered cemented carbide particles

Aleksandr B Stefaniak et al. J Occup Environ Hyg. 2010 Jan.

Abstract

Rapid generation of reactive oxygen species (ROS) may occur in response to cellular contact with metal particles. Generation of ROS by cobalt and/or tungsten carbide is implicated in causing hard metal lung disease (HMD) and allergic contact dermatitis (ACD). In this study, ROS generation and particle properties that influence radical generation were assessed for three sizes of tungsten, tungsten carbide, cobalt, admixture (tungsten carbide and cobalt powders), spray dryer, and post-sintered chamfer grinder powders using chemical (H(2)O(2) plus phosphate buffered saline, artificial lung surfactant, or artificial sweat) and cellular (RAW 264.7 mouse peritoneal monocytes plus artificial lung surfactant) reaction systems. For a given material, on a mass basis, hydroxyl (.OH) generation generally increased as particle size decreased; however, on a surface area basis, radical generation levels were more, but not completely, similar. Chamfer grinder powder, polycrystalline aggregates of tungsten carbide in a metallic cobalt matrix, generated the highest levels of .OH radicals (p < 0.05). Radical generation was not dependent on the masses of metals, rather, it involved surface-chemistry-mediated reactions that were limited to a biologically active fraction of the total available surface area of each material. Improved understanding of particle surface chemistry elucidated the importance of biologically active surface area in generation of ROS by particle mixtures.

PubMed Disclaimer

LinkOut - more resources