Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 7;15(47):12978-92.
doi: 10.1002/chem.200902172.

The palladium-catalyzed aerobic kinetic resolution of secondary alcohols: reaction development, scope, and applications

Affiliations

The palladium-catalyzed aerobic kinetic resolution of secondary alcohols: reaction development, scope, and applications

David C Ebner et al. Chemistry. .

Abstract

The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Ligands evaluated in Table 1.
Figure 2
Figure 2
Enantioenriched ketones obtained from the kinetic resolution.
Figure 3
Figure 3
Examples of alcohols displaying poor reactivity.
Figure 4
Figure 4
Examples of alcohols oxidized with poor selectivity.
Figure 5
Figure 5
Polyether natural products potentially accessible by meso-diol desymmetrization.
Scheme 1
Scheme 1
Uemura’s oxidation of alcohols.
Scheme 2
Scheme 2
Proposed mechanism for the palladium-catalyzed alcohol oxidation.
Scheme 3
Scheme 3
Initial conditions for the Pd-catalyzed enantioselective oxidation of alcohols.
Scheme 4
Scheme 4
Potential role of excess sparteine and base.
Scheme 5
Scheme 5
Stabilization of the β-hydride elimination transition state by resonance and a β-silicon.
Scheme 6
Scheme 6
Formation of inactive Pd complex 13.
Scheme 7
Scheme 7
Model for kinetic resolution selectivity.
Scheme 8
Scheme 8
Secondary alcohols as drug intermediates.
Scheme 9
Scheme 9
Conversion of a resolved alcohol to a functionalized tetrahydrofuran.
Scheme 10
Scheme 10
Desymmetrization of diol 41.
Scheme 11
Scheme 11
Preparation of meso-diols from a common starting material.
Scheme 12
Scheme 12
Oxidative desymmetrization of meso-diols.

Similar articles

Cited by

References

    1. Hudlicky M. Oxidations in Organic Chemistry, ACS Monograph Series. American Chemical Society; Washington, DC: 1990.
    2. Tidwell TT. Org React. 1990;39:297–572.
    3. Trost BM, Fleming I, editors. Comprehensive Organic Synthesis. Pergamon; Oxford, U.K.: 1991.
    4. Luzzio FA. Org React. 1998;53:1–221.
    1. Larock RC. Comprehensive Organic Transformations. Wiley & Sons; New York: 1999. pp. 1234–1248.
    1. Ohkubo K, Hirata K, Yoshinaga K, Okada M. Chem Lett. 1976:183–184.
    2. Berti C, Perkins MJ. Angew Chem. 1979;91:923–924.
    3. Angew Chem Int Ed Engl. 1979;18:864–865.
    4. Ishii Y, Suzuki K, Ikariya T, Saburi M, Yoshikawa S. J Org Chem. 1986;51:2822–2824.
    5. Ma Z, Huang Q, Bobbitt JM. J Org Chem. 1993;58:4837–4843.
    6. Rychnovsky SD, McLernon TL, Rajapakse H. J Org Chem. 1996;61:1194–1195.
    7. Kashiwagi Y, Yanagisawa Y, Kurashima F, Anzai J-i, Osa T, Bobbitt JM. Chem Commun. 1996:2745–2746. - PubMed
    8. Hashiguchi S, Fujii A, Haack KJ, Matsumura K, Ikariya T, Noyori R. Angew Chem. 1997;109:300–303.
    9. Angew Chem Int Ed Engl. 1997;36:288–289.
    10. Hamada T, Irie R, Mihara J, Hamachi K, Katsuki T. Tetrahedron. 1998;54:10017–10028.
    11. Nishibayashi Y, Takei I, Uemura S, Hidai M. Organometallics. 1999;18:2291–2293.
    12. Gross Z, Ini S. Org Lett. 1999;1:2077–2080.
    13. Kashiwagi Y, Kurashima F, Kikuchi C, Anzai J-i, Osa T, Bobbitt JM. Tetrahedron Lett. 1999;40:6469–6472.
    14. Masutani K, Uchida T, Irie R, Katsuki T. Tetrahedron Lett. 2000;41:5119–5123.
    15. Kuroboshi M, Yoshihisa H, Cortona MN, Kawakami Y, Gao Z, Tanaka H. Tetrahedron Lett. 2000;41:8131–8135.
    1. Subsequent to our initial report in this area, a number of further studies were reported, see: Shimizu H, Nakata K, Katsuki T. Chem Lett. 2002:1080–1081.Sun W, Wang H, Xia C, Li J, Zhao P. Angew Chem. 2003;115:1072–1074.Angew Chem Int Ed. 2003;42:1042–1044.Nishibayashi Y, Yamauchi A, Onodera G, Uemura S. J Org Chem. 2003;68:5875–5880.Graetz B, Rychnovsky S, Leu WH, Farmer P, Lin R. Tetrahedron: Asymmetry. 2005;16:3584–3598.Radosevich AT, Musich C, Toste FD. J Am Chem Soc. 2005;127:1090–1091.Li Z, Tang ZH, Hu XX, Xia CG. Chem Eur J. 2005;11:1210–1216.Weng SS, Shen MW, Kao JQ, Munot YS, Chen CT. Proc Natl Acad Sci USA. 2006;103:3522–3527.Pawar VD, Bettigeri S, Weng SS, Kao JQ, Chen CT. J Am Chem Soc. 2006;128:6308–6309.Li YY, Zhang XQ, Dong ZR, Shen WY, Chen G, Gao JX. Org Lett. 2006;8:5565–5567.Sun W, Wu X, Xia C. Helv Chim Acta. 2007;90:623–626.Chen T, Jiang JJ, Xu Q, Shi M. Org Lett. 2007;9:865–868.Kantam ML, Ramani T, Chakrapani L, Choudary BM. J Mol Catal A: Chem. 2007;274:11–15.Kureshy RI, Ahmad I, Pathak K, Khan N-uH, Abdi SHR, Prathap JK, Jasra RV. Chirality. 2007;19:352–357.Nakamura Y, Egami H, Matsumoto K, Uchida T, Katsuki T. Tetrahedron. 2007;63:6383–6387.Pathak K, Ahmad I, Abdi SHR, Kureshy RI, Khan N-uH, Jasra RV. J Mol Catal A: Chem. 2007;274:120–126.Onomura O, Arimoto H, Matsumura Y, Demizu Y. Tetrahedron Lett. 2007;48:8668–8672.Arita S, Koike T, Kayaki Y, Ikariya T. Angew Chem. 2008;120:2481–2483.Angew Chem Int Ed. 2008;47:2447–2449.Tomizawa M, Shibuya M, Iwabuchi Y. Org Lett. 2009;11:1829–1831.

    1. Stoltz BM. Chem Lett. 2004;33:362–367.

Publication types

LinkOut - more resources