Naphthalimide-porphyrin hybrid based ratiometric bioimaging probe for Hg2+: well-resolved emission spectra and unique specificity
- PMID: 19904913
- DOI: 10.1021/ac9018445
Naphthalimide-porphyrin hybrid based ratiometric bioimaging probe for Hg2+: well-resolved emission spectra and unique specificity
Abstract
In this paper, we unveil a novel naphthalimide-porphyrin hybrid based fluorescence probe (1) for ratiometric detection of Hg(2+) in aqueous solution and living cells. The ratiometric signal change of the probe is based on a carefully predesigned molecule containing two independent Hg(2+)-sensitive fluorophores with their maximal excitation wavelengths located at the same range, which shows reversibly specific ratiometric fluorescence responses induced by Hg(2+). In the new developed sensing system, the emissions of the two fluorophores are well-resolved with a 125 nm difference between two emission maxima, which can avoid the emission spectra overlap problem generally met by spectra-shift type probes and is especially favorable for ratiometric imaging intracellular Hg(2+). It also benefits from a large range of emission ratios and thereby a high sensitivity for Hg(2+) detection. Under optimized experimental conditions, the probe exhibits a stable response for Hg(2+) over a concentration range from 1.0 x 10(-7) to 5.0 x 10(-5) M, with a detection limit of 2.0 x 10(-8) M. The response of the probe toward Hg(2+) is reversible and fast (response time less than 2 min). Most importantly, the ratiometric fluorescence changes of the probe are remarkably specific for Hg(2+) in the presence of other abundant cellular metal ions (i.e., Na(+), K(+), Mg(2+), and Ca(2+)), essential transition metal ions in cells (such as Zn(2+), Fe(3+), Fe(2+), Cu(2+), Mn(2+), Co(2+), and Ni(2+)), and environmentally relevant heavy metal ions (Ag(+), Pb(2+), Cr(3+), and Cd(2+)), which meets the selective requirements for biomedical and environmental monitoring application. The recovery test of Hg(2+) in real water samples demonstrates the feasibility of the designed sensing system for Hg(2+) assay in practical samples. It has also been used for ratiometric imaging of Hg(2+) in living cells with satisfying resolution, which indicates that our novel designed probe has effectively avoided the general emission spectra overlap problem of other ratiometric probes.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources