Buckyballs meet viral nanoparticles: candidates for biomedicine
- PMID: 19904938
- PMCID: PMC2797550
- DOI: 10.1021/ja902293w
Buckyballs meet viral nanoparticles: candidates for biomedicine
Abstract
Fullerenes such as C(60) show promise as functional components in several emerging technologies. For biomedical applications, C(60) has been used in gene- and drug-delivery vectors, as imaging agents, and as photosensitizers in cancer therapy. A major drawback of C(60) for bioapplications is its insolubility in water. To overcome this limitation, we covalently attached C(60) derivatives to Cowpea mosaic virus and bacteriophage Qbeta virus-like particles, which are examples of naturally occurring viral nanoparticle (VNP) structures that have been shown to be promising candidates for biomedicine. Two different labeling strategies were employed, giving rise to water-soluble, stable VNP-C(60) and VNP-PEG-C(60) conjugates. Samples were characterized using a combination of transmission electron microscopy, scanning transmission electron microscopy (STEM), gel electrophoresis, size-exclusion chromatography, dynamic light scattering, and Western blotting. "Click" chemistry bioconjugation using a poly(ethylene glycol) (PEG)-modified propargyl-O-PEG-C(60) derivative gave rise to high loadings of fullerene on the VNP surface, as indicated by the imaging of individual C(60) units using STEM. The cellular uptake of dye-labeled VNP-PEG-C(60) complexes in a human cancer cell line was found by confocal microscopy to be robust, showing that cell internalization was not inhibited by the attached C(60) units. These results open the door for the development of novel therapeutic devices with potential applications in photoactivated tumor therapy.
Figures


Similar articles
-
Viral nanoparticles for in vivo tumor imaging.J Vis Exp. 2012 Nov 16;(69):e4352. doi: 10.3791/4352. J Vis Exp. 2012. PMID: 23183850 Free PMC article.
-
PEGylated viral nanoparticles for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo.Biomacromolecules. 2009 Apr 13;10(4):784-92. doi: 10.1021/bm8012742. Biomacromolecules. 2009. PMID: 19281149 Free PMC article.
-
Interior engineering of a viral nanoparticle and its tumor homing properties.Biomacromolecules. 2012 Dec 10;13(12):3990-4001. doi: 10.1021/bm301278f. Epub 2012 Nov 14. Biomacromolecules. 2012. PMID: 23121655 Free PMC article.
-
Advancing Nanomedicine Through Electron Microscopy: Insights Into Nanoparticle Cellular Interactions and Biomedical Applications.Int J Nanomedicine. 2025 Mar 8;20:2847-2878. doi: 10.2147/IJN.S500978. eCollection 2025. Int J Nanomedicine. 2025. PMID: 40078651 Free PMC article. Review.
-
Cowpea mosaic virus nanoparticles for cancer imaging and therapy.Adv Drug Deliv Rev. 2019 May;145:130-144. doi: 10.1016/j.addr.2019.04.005. Epub 2019 Apr 17. Adv Drug Deliv Rev. 2019. PMID: 31004625 Review.
Cited by
-
Photodynamic activity of viral nanoparticles conjugated with C60.Chem Commun (Camb). 2012 Sep 18;48(72):9044-6. doi: 10.1039/c2cc34695h. Epub 2012 Aug 2. Chem Commun (Camb). 2012. PMID: 22858632 Free PMC article.
-
Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine.Int J Mol Sci. 2024 Dec 24;26(1):36. doi: 10.3390/ijms26010036. Int J Mol Sci. 2024. PMID: 39795895 Free PMC article. Review.
-
Deformation density components analysis of fullerene-based anti-HIV drugs.J Mol Model. 2014 Nov;20(11):2486. doi: 10.1007/s00894-014-2486-z. Epub 2014 Nov 13. J Mol Model. 2014. PMID: 25388278
-
Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro.Nanoscale. 2016 Mar 28;8(12):6542-54. doi: 10.1039/c6nr00398b. Nanoscale. 2016. PMID: 26935414 Free PMC article.
-
Design of virus-based nanomaterials for medicine, biotechnology, and energy.Chem Soc Rev. 2016 Jul 25;45(15):4074-126. doi: 10.1039/c5cs00287g. Chem Soc Rev. 2016. PMID: 27152673 Free PMC article. Review.
References
-
- Thompson BC, Frechet JM. Angew Chem Int Ed Engl. 2008;47:58–77. - PubMed
- Taylor R, Walton D. Nature. 1993;363:685–693.
-
- Mroz P, Pawlak A, Satti M, Lee H, Wharton T, Gali H, Sarna T, Hamblin MR. Free Radic Biol Med. 2007;43:711–719. - PMC - PubMed
- Qu X, Komatsu T, Sato T, Glatter O, Horinouchi H, Kobayashi K, Tsuchida E. Bioconjugate Chem. 2008;19:1556–1560. - PubMed
- Zhao B, He YY, Bilski PJ, Chignell CF. Chem Res Toxicol. 2008;21:1056–1063. - PMC - PubMed
-
- Andersson T, Westman G, Wennerstroem O, Sundhahl M. J. Chem. Soc. Perkin Trans. 1994;2:1097–1101.
- Hummelen J, Knight B, LePeq F, Wudl F. J. Org. Chem. 1995;60:532–538.
- Sijbesma R, Srdanov G, Wudl F, Castoro J, Wilkins C, Friedman S, DeCamp D, Kenyon G. J.Am Chem. Soc. 1993;115:6510–6512.
- Sitharaman B, Zakharian T, Saraf A, Misra P, Ashcroft J, Pan S, Pham Q, Mikos A, Wilson L, Engler D. Mol. Pharm. 2008;5:567–578. - PMC - PubMed
- Vasella A, Uhlmann P, Waldruff C, Diederich F, Thilgen C. Angew. Chem, Int, Ed. 1992;31:1388–1390.
-
- Manchester M, Steinmetz NF. Viruses and Nanotechnology. Vol. 327. Berlin Heidelberg: Springer Verlag; 2008.
- Young M, Willits D, Uchida M, Douglas T. Annu Rev Phytopathol. 2008;46:361–384. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources