Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;80(4 Pt 2):046221.
doi: 10.1103/PhysRevE.80.046221. Epub 2009 Oct 30.

Faceting and coarsening dynamics in the complex Swift-Hohenberg equation

Affiliations

Faceting and coarsening dynamics in the complex Swift-Hohenberg equation

Lendert Gelens et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct.

Abstract

The complex Swift-Hohenberg equation models pattern formation arising from an oscillatory instability with a finite wave number at onset and finds applications in lasers, optical parametric oscillators, and photorefractive oscillators. We show that with real coefficients this equation exhibits two classes of localized states: localized in amplitude only or localized in both amplitude and phase. The latter are associated with phase-winding states in which the real and imaginary parts of the order parameter oscillate periodically but with a constant phase difference between them. The localized states take the form of defects connecting phase-winding states with equal and opposite phase lag, and can be stable over a wide range of parameters. The formation of these defects leads to faceting of states with initially spatially uniform phase. Depending on parameters these facets may either coarsen indefinitely, as described by a Cahn-Hilliard equation, or the coarsening ceases leading to a frozen faceted structure.

PubMed Disclaimer

Publication types