Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Nov;232(1):59-71.
doi: 10.1111/j.1600-065X.2009.00832.x.

Inhibitory ITAMs as novel regulators of immunity

Affiliations
Review

Inhibitory ITAMs as novel regulators of immunity

Ulrich Blank et al. Immunol Rev. 2009 Nov.

Abstract

Immune homeostasis is regulated by a finely tuned network of positive-negative regulatory mechanisms that guarantees proper surveillance avoiding hyperactivity that would lead to autoimmunity and inflammatory diseases. Immune responses involve the activation of immunoreceptors that contain tyrosine-based activation motifs (ITAMs). One arm of control involves immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors, which upon co-aggregation initiate an inhibitory signal through recruitment of signal-aborting phosphatases. Recently, a new immunoregulatory function has been ascribed to ITAMs, which represent in fact dual function modules that, under specific configurations termed inhibitory ITAM (ITAMi), can propagate inhibitory signals. One paradigm is the immunoglobulin A (IgA) Fc receptor (FcalphaRI), which, upon interaction with IgA monomers in the absence of antigen, initiates a powerful inhibitory signal involving Src homology 2 domain-containing phosphatase 1 (SHP-1) recruitment that suppresses cell activation launched by a whole variety of heterologous receptors without co-aggregation. This explains the long known function of IgA as an anti-inflammatory isotype. The importance of this control mechanism in immune homeostasis is underlined by the high incidence of autoimmune and allergic diseases in IgA-deficient patients. ITAMi is now described for an increasing number of immunoreceptors with multiple roles in immunity. ITAMi signaling is also exploited by Escherichia coli to achieve immune evasion during sepsis. Here, we review our current understanding of ITAMi regulatory mechanisms in immune responses and discuss its role in immune homeostasis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources