Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica
- PMID: 19911043
- PMCID: PMC2768785
- DOI: 10.1371/journal.pgen.1000721
Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica
Abstract
Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures




Similar articles
-
Comparative genomics of Blattabacterium cuenoti: the frozen legacy of an ancient endosymbiont genome.Genome Biol Evol. 2013;5(2):351-61. doi: 10.1093/gbe/evt011. Genome Biol Evol. 2013. PMID: 23355305 Free PMC article.
-
Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches.BMC Microbiol. 2012 Jan 18;12 Suppl 1(Suppl 1):S5. doi: 10.1186/1471-2180-12-S1-S5. BMC Microbiol. 2012. PMID: 22376077 Free PMC article.
-
The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont.Biol Lett. 2014 Jul;10(7):20140407. doi: 10.1098/rsbl.2014.0407. Biol Lett. 2014. PMID: 25079497 Free PMC article.
-
Of Cockroaches and Symbionts: Recent Advances in the Characterization of the Relationship between Blattella germanica and Its Dual Symbiotic System.Life (Basel). 2022 Feb 15;12(2):290. doi: 10.3390/life12020290. Life (Basel). 2022. PMID: 35207577 Free PMC article. Review.
-
Functional symbiosis and communication in microbial ecosystems. The case of wood-eating termites and cockroaches.Int Microbiol. 2015 Sep;18(3):159-69. doi: 10.2436/20.1501.01.246.. Int Microbiol. 2015. PMID: 27036743 Review.
Cited by
-
Nuclear genetic diversity of head lice sheds light on human dispersal around the world.PLoS One. 2023 Nov 8;18(11):e0293409. doi: 10.1371/journal.pone.0293409. eCollection 2023. PLoS One. 2023. PMID: 37939041 Free PMC article.
-
Distinctive Genome Reduction Rates Revealed by Genomic Analyses of Two Coxiella-Like Endosymbionts in Ticks.Genome Biol Evol. 2015 May 28;7(6):1779-96. doi: 10.1093/gbe/evv108. Genome Biol Evol. 2015. PMID: 26025560 Free PMC article.
-
Matrotrophic viviparity constrains microbiome acquisition during gestation in a live-bearing cockroach, Diploptera punctata.Ecol Evol. 2019 Aug 22;9(18):10601-10614. doi: 10.1002/ece3.5580. eCollection 2019 Sep. Ecol Evol. 2019. PMID: 31624569 Free PMC article.
-
Environmental and gut bacteroidetes: the food connection.Front Microbiol. 2011 May 30;2:93. doi: 10.3389/fmicb.2011.00093. eCollection 2011. Front Microbiol. 2011. PMID: 21747801 Free PMC article.
-
Horizontally Transferred Genetic Elements in the Tsetse Fly Genome: An Alignment-Free Clustering Approach Using Batch Learning Self-Organising Map (BLSOM).Biomed Res Int. 2016;2016:3164624. doi: 10.1155/2016/3164624. Epub 2016 Dec 15. Biomed Res Int. 2016. PMID: 28074180 Free PMC article.
References
-
- Blochmann F. Über das regelmässige Vorkommen von backterienähnlichen Gebilden in den Geweben und Eiern versichiedener Insekten. Z Biol. 1887;24:6.
-
- Buchner P. Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience Publishers; 1965.
-
- Block RJ, Henry SM. Metabolism of the sulphur amino acids and of sulphate in Blattella germanica. Nature. 1961;191:392–393.
-
- Brooks MA. Comments on the classification of intracellular symbiotes of cockroaches and a description of the species. J Invert Pathol. 1970;16:249–258.
-
- Bandi C, Damiani G, Magrassi L, Grigolo A, Fani R, et al. Flavobacteria as intracellular symbionts in cockroaches. Proc Biol Sci. 1994;257:43–48. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases