Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jan 23;1073(1):18-22.
doi: 10.1016/0304-4165(91)90177-i.

Characterization of the general anion-binding site in glutamate dehydrogenase-NADPH complex

Affiliations

Characterization of the general anion-binding site in glutamate dehydrogenase-NADPH complex

R Srinivasan. Biochim Biophys Acta. .

Abstract

The reductive amination of alpha-ketoglutarate, catalyzed by bovine liver glutamate dehydrogenase, is inhibited by various anions. Formate and acetate ions are competitive with alpha-ketoglutarate. The pH dependence of the pKi profiles for these anions reveals that they bind to the enzyme-NADPH complex only when an enzymatic residue of pK 8.0 +/- 0.1 in the binary complex is protonated. The ionization of this residue has a delta Hion of 15 +/- 4 kcal/mol. These pK and delta Hion values are not significantly different from those observed in the same complex for the enzyme group which binds the gamma-CO2- of alpha-ketoglutarate and oxalylglycine. It is concluded that formate and acetate also bind to the gamma-carboxylate site in enzyme-NADPH. The Ki values for formate and acetate in a buffer containing 0.1 M phosphate are 20 +/- 4 and 32 +/- 5 mM, respectively, when the pK 8.0 group is fully protonated. Phosphate and trifluoroacetate also show an inhibitory effect, while valerate and sulfate have little effect on the reductive amination rates. The results suggest that specific anions can bind to the gamma-carboxylate site by ionic interactions and alter the kinetic and thermodynamic parameters of the glutamate dehydrogenase-NADPH complex in significant ways.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources